Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A

An Erratum to this article was published on 18 July 2012

This article has been updated

Abstract

Subtilosin A is a 35-residue, ribosomally synthesized bacteriocin encoded by the sbo-alb operon of Bacillus subtilis. It is composed of a head-to-tail circular peptide backbone that is additionally restrained by three unusual thioether bonds between three cysteines and the α-carbon of one threonine and two phenylalanines, respectively. In this study, we demonstrate that these bonds are synthesized by the radical S-adenosylmethionine enzyme AlbA, which is encoded by the sbo-alb operon and comprises two [4Fe-4S] clusters. One [4Fe-4S] cluster is coordinated by the prototypical CXXXCXXC motif and is responsible for the observed S-adenosylmethionine cleavage reaction, whereas the second [4Fe-4S] cluster is required for the generation of all three thioether linkages. On the basis of the obtained results, we propose a new radical mechanism for thioether bond formation. In addition, we show that AlbA-directed substrate transformation is leader-peptide dependent, suggesting that thioether bond formation is the first step during subtilosin A maturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of AlbA as a radical SAM enzyme.
Figure 2: Precursor-peptide modification assays and alignment.
Figure 3: Postulated biosynthesis of subtilosin A.
Figure 4: Proposed mechanism for thioether bond formation.

Similar content being viewed by others

Change history

  • 16 April 2012

    In the version of this article initially published, S-adenosyl methionine was drawn with a radical instead of a cation in Figure 4. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Hallen, H.E., Luo, H., Scott-Craig, J.S. & Walton, J.D. Gene family encoding the major toxins of lethal Amanita mushrooms. Proc. Natl. Acad. Sci. USA 104, 19097–19101 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Cascales, L. & Craik, D.J. Naturally occurring circular proteins: distribution, biosynthesis and evolution. Org. Biomol. Chem. 8, 5035–5047 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Maqueda, M. et al. Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol. Rev. 32, 2–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Babasaki, K., Takao, T., Shimonishi, Y. & Kurahashi, K. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J. Biochem. 98, 585–603 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Shelburne, C.E. et al. The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J. Antimicrob. Chemother. 59, 297–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Sutyak, K.E. et al. Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infect. Dis. Obstet. Gynecol. 2008, 540758 (2008).

    Article  PubMed  Google Scholar 

  7. Silkin, L., Hamza, S., Kaufman, S., Cobb, S.L. & Vederas, J.C. Spermicidal bacteriocins: lacticin 3147 and subtilosin A. Bioorg. Med. Chem. Lett. 18, 3103–3106 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Huang, T. et al. Isolation of a variant of subtilosin A with hemolytic activity. J. Bacteriol. 191, 5690–5696 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Kawulka, K. et al. Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to α-carbons of phenylalanine and threonine. J. Am. Chem. Soc. 125, 4726–4727 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Kawulka, K.E. et al. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to α-carbon cross-links: formation and reduction of α-thio-α-amino acid derivatives. Biochemistry 43, 3385–3395 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, W.-T. et al. Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 107, 16286–16290 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, H., Churey, J.J. & Worobo, R.W. Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol. Lett. 299, 205–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Sit, C.S., van Belkum, M.J., McKay, R.T., Worobo, R.W. & Vederas, J.C. The 3D solution structure of thurincin H, a cacteriocin with four sulfur to α-carbon crosslinks. Angew. Chem. Int. Edn Engl. 50, 8718–8721 (2011).

    Article  CAS  Google Scholar 

  14. Rea, M.C. et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl. Acad. Sci. USA 107, 9352–9357 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Sit, C.S., McKay, R.T., Hill, C., Ross, R.P. & Vederas, J.C. The 3D structure of thuricin CD, a two-component bacteriocin with cysteine sulfur to α-carbon cross-links. J. Am. Chem. Soc. 133, 7680–7683 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Zheng, G., Yan, L.Z., Vederas, J.C. & Zuber, P. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181, 7346–7355 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Zheng, G., Hehn, R. & Zuber, P. Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J. Bacteriol. 182, 3266–3273 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Nakano, M.M., Zheng, G. & Zuber, P. Dual control of sbo-alb operon expression by the Spo0 and ResDE systems of signal transduction under anaerobic conditions in Bacillus subtilis. J. Bacteriol. 182, 3274–3277 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Albano, M. et al. The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions. J. Bacteriol. 187, 2010–2019 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. González-Pastor, J.E., Hobbs, E.C. & Losick, R. Cannibalism by sporulating bacteria. Science 301, 510–513 (2003).

    Article  PubMed  Google Scholar 

  21. Sofia, H.J., Chen, G., Hetzler, B., Reyes-Spindola, J. & Miller, N. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29, 1097–1106 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Frey, P.A., Hegeman, A.D. & Ruzicka, F.J. The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol. 43, 63–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Duschene, K.S., Veneziano, S.E., Silver, S.C. & Broderick, J.B. Control of radical chemistry in the AdoMet radical enzymes. Curr. Opin. Chem. Biol. 13, 74–83 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Chirpich, T.P., Zappia, V., Costilow, R.N. & Barker, H.A. Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme. J. Biol. Chem. 245, 1778–1789 (1970).

    CAS  PubMed  Google Scholar 

  25. Layer, G. et al. Structural and functional comparison of HemN to other radical SAM enzymes. Biol. Chem. 386, 971–980 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Guianvarc'h, D., Florentin, D., Tse Sum Bui, B., Nunzi, F. & Marquet, A. Biotin synthase, a new member of the family of enzymes which uses S-adenosylmethionine as a source of deoxyadenosyl radical. Biochem. Biophys. Res. Commun. 236, 402–406 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Ugulava, N.B., Gibney, B.R. & Jarrett, J.T. Biotin synthase contains two distinct iron-sulfur cluster binding sites: chemical and spectroelectrochemical analysis of iron-sulfur cluster interconversions. Biochemistry 40, 8343–8351 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Berkovitch, F. Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science 303, 76–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Miller, J.R. et al. Escherichia coli LipA is a lipoyl synthase: in vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl-acyl carrier protein. Biochemistry 39, 15166–15178 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Cicchillo, R.M. et al. Lipoyl synthase requires two equivalents of S-adenosyl-L-methionine to synthesize one equivalent of lipoic acid. Biochemistry 43, 6378–6386 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Santamaria-Araujo, J.A. et al. The tetrahydropyranopterin structure of the sulfur-free and metal-free molybdenum cofactor precursor. J. Biol. Chem. 279, 15994–15999 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Hänzelmann, P. & Schindelin, H. Binding of 5′-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism. Proc. Natl. Acad. Sci. USA 103, 6829–6834 (2006).

    Article  PubMed  Google Scholar 

  33. Pierrel, F., Douki, T., Fontecave, M. & Atta, M. MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. J. Biol. Chem. 279, 47555–47563 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Hernández, H.L. et al. MiaB, a bifunctional radical-S-adenosylmethionine enzyme involved in the thiolation and methylation of tRNA, contains two essential [4Fe-4S] clusters. Biochemistry 46, 5140–5147 (2007).

    Article  PubMed  Google Scholar 

  35. Lee, K.-H. et al. Characterization of RimO, a new member of the methylthiotransferase subclass of the radical SAM superfamily. Biochemistry 48, 10162–10174 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Yokoyama, K., Numakura, M., Kudo, F., Ohmori, D. & Eguchi, T. Characterization and mechanistic study of a radical SAM dehydrogenase in the biosynthesis of butirosin. J. Am. Chem. Soc. 129, 15147–15155 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Grove, T.L., Ahlum, J.H., Sharma, P., Krebs, C. & Booker, S.J. A consensus mechanism for radical SAM-dependent dehydrogenation? BtrN contains two [4Fe-4S] clusters. Biochemistry 49, 3783–3785 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Fang, Q., Peng, J. & Dierks, T. Post-translational formylglycine modification of bacterial sulfatases by the radical S-adenosylmethionine protein AtsB. J. Biol. Chem. 279, 14570–14578 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Grove, T.L., Lee, K.-H., St. Clair, J., Krebs, C. & Booker, S.J. In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters. Biochemistry 47, 7523–7538 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Hagen, K. & Watson, A. Synthetic routes to iron sulfide (Fe2S2, Fe3S4, Fe4S4, and Fe6S9), clusters from the common precursor tetrakis(ethanethiolate)ferrate2– ion ([Fe(SC2H5)4]2–): structures and properties of [Fe3S4(SR)4]3– and bis(ethanethiolate)nonathioxohexaferrate4– ion ([Fe6S9(SC2H5)2]4–), examples of the newest types of Fe-S-SR clusters. J. Am. Chem. Soc. 105, 3905–3913 (1983).

    Article  CAS  Google Scholar 

  41. Külzer, R., Pils, T., Kappl, R., Hüttermann, J. & Knappe, J. Reconstitution and characterization of the polynuclear iron-sulfur cluster in pyruvate formate-lyase-activating enzyme. Molecular properties of the holoenzyme form. J. Biol. Chem. 273, 4897–4903 (1998).

    Article  PubMed  Google Scholar 

  42. Ugulava, N.B., Gibney, B.R. & Jarrett, J.T. Iron-sulfur cluster interconversions in biotin synthase: dissociation and reassociation of iron during conversion of [2Fe-2S] to [4Fe-4S] clusters. Biochemistry 39, 5206–5214 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Duschene, K.S. & Broderick, J.B. The antiviral protein viperin is a radical SAM enzyme. FEBS Lett. 584, 1263–1267 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Chatterjee, A. et al. Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily. Nat. Chem. Biol. 4, 758–765 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Murphy, K. et al. Genome mining for radical SAM protein determinants reveals multiple sactibiotic-like gene clusters. PLoS ONE 6, e20852 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Oman, T.J. & van der Donk, W.A. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat. Chem. Biol. 6, 9–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Xie, L., Miller, L., Chatterjee, C. & Averin, O. Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science 303, 679–681 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Chatterjee, C., Paul, M., Xie, L. & van der Donk, W.A. Biosynthesis and mode of action of lantibiotics. Chem. Rev. 105, 633–684 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Roach, P.L., Clifton, I., Hensgens, C. & Shibata, N. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature 387, 827–830 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Layer, G., Verfürth, K., Mahlitz, E. & Jahn, D. Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli. J. Biol. Chem. 277, 34136–34142 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank N. Fritzler and J. Bamberger for practical realization of the HPLC-HRMS measurements. In addition, we would like to thank the whole Marahiel group for fruitful discussions. Furthermore, we gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft and from the LOEWE Center for Synthetic Microbiology.

Author information

Authors and Affiliations

Authors

Contributions

T.A.K. and M.A.M. initiated the project. M.J.G., L.F. and T.A.K. conceived the experiments. M.J.G. performed preliminary experiments for the characterization of AlbA. L.F. performed most experiments. M.J.G. and L.F. prepared the figures. O.B. carried out the EPR measurements. U.L. designed the HPLC-MS gradients and carried out the measurements. A.S. cloned, expressed and purified AlbA. L.F. and T.A.K. analyzed and interpreted the obtained data. L.F., T.A.K. and M.A.M. coordinated the project and wrote the manuscript.

Corresponding author

Correspondence to Mohamed A Marahiel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 11619 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flühe, L., Knappe, T., Gattner, M. et al. The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat Chem Biol 8, 350–357 (2012). https://doi.org/10.1038/nchembio.798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.798

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing