Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic O-GlcNAc modification regulates CREB-mediated gene expression and memory formation

Abstract

The transcription factor cyclic AMP–response element binding protein (CREB) is a key regulator of many neuronal processes, including brain development, circadian rhythm and long-term memory. Studies of CREB have focused on its phosphorylation, although the diversity of CREB functions in the brain suggests additional forms of regulation. Here we expand on a chemoenzymatic strategy for quantifying glycosylation stoichiometries to characterize the functional roles of CREB glycosylation in neurons. We show that CREB is dynamically modified with an O-linked β-N-acetyl-D-glucosamine sugar in response to neuronal activity and that glycosylation represses CREB-dependent transcription by impairing its association with CREB-regulated transcription coactivator (CRTC; also known as transducer of regulated CREB activity). Blocking glycosylation of CREB alters cellular function and behavioral plasticity, enhancing both axonal and dendritic growth and long-term memory consolidation. Our findings demonstrate a new role for O-glycosylation in memory formation and provide a mechanistic understanding of how glycosylation contributes to critical neuronal functions. Moreover, we identify a previously unknown mechanism for the regulation of activity-dependent gene expression, neural development and memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CREB is O-GlcNAc glycosylated at Ser40 in response to neuronal activity.
Figure 2: Neuronal activity induces CREB glycosylation preferentially on the Ser133-phosphorylated subpopulation.
Figure 3: Glycosylation at Ser40 represses CREB activity via a CRTC-dependent mechanism.
Figure 4: CREB glycosylation at Ser40 represses dendritic and axonal growth.
Figure 5: CREB glycosylation at Ser40 modulates long-term conditioned fear memory.

Similar content being viewed by others

References

  1. Lonze, B.E., Riccio, A., Cohen, S. & Ginty, D.D. Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34, 371–385 (2002).

    Article  CAS  Google Scholar 

  2. Carlezon, W.A. Jr. et al. Regulation of cocaine reward by CREB. Science 282, 2272–2275 (1998).

    Article  CAS  Google Scholar 

  3. Kida, S. et al. CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 5, 348–355 (2002).

    Article  CAS  Google Scholar 

  4. Kornhauser, J.M. et al. CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 34, 221–233 (2002).

    Article  CAS  Google Scholar 

  5. Gau, D. et al. Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34, 245–253 (2002).

    Article  CAS  Google Scholar 

  6. Lonze, B.E. & Ginty, D.D. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623 (2002).

    Article  CAS  Google Scholar 

  7. Shaywitz, A.J. & Greenberg, M.E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821–861 (1999).

    Article  CAS  Google Scholar 

  8. Barco, A., Jancic, D. & Kandel, E.R. CREB-dependent transcription and synaptic plasticity. in Transcriptional Regulation by Neuronal Activity (ed. Dudek, S.M.) 127–154 (Springer US, 2008).

  9. Chrivia, J.C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859 (1993).

    Article  CAS  Google Scholar 

  10. Deisseroth, K. & Tsien, R.W. Dynamic multiphosphorylation passwords for activity-dependent gene expression. Neuron 34, 179–182 (2002).

    Article  CAS  Google Scholar 

  11. Conkright, M.D. et al. TORCs: transducers of regulated CREB activity. Mol. Cell 12, 413–423 (2003).

    Article  CAS  Google Scholar 

  12. Hart, G.W., Housley, M.P. & Slawson, C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007).

    Article  CAS  Google Scholar 

  13. Rexach, J.E., Clark, P.M. & Hsieh-Wilson, L.C. Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat. Chem. Biol. 4, 97–106 (2008).

    Article  CAS  Google Scholar 

  14. Love, D.C. & Hanover, J.A. The hexosamine signaling pathway: deciphering the “O-GlcNAc code”. Sci. STKE 2005, re13 (2005).

    Google Scholar 

  15. Khidekel, N., Ficarro, S.B., Peters, E.C. & Hsieh-Wilson, L.C. Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc. Natl. Acad. Sci. USA 101, 13132–13137 (2004).

    Article  CAS  Google Scholar 

  16. Vosseller, K. et al. O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol. Cell. Proteomics 5, 923–934 (2006).

    Article  CAS  Google Scholar 

  17. Greengard, P. The neurobiology of slow synaptic transmission. Science 294, 1024–1030 (2001).

    Article  CAS  Google Scholar 

  18. Tallent, M.K. et al. In vivo modulation of O-GlcNAc levels regulates hippocampal synaptic plasticity through interplay with phosphorylation. J. Biol. Chem. 284, 174–181 (2009).

    Article  CAS  Google Scholar 

  19. Rengifo, J., Gibson, C.J., Winkler, E., Collin, T. & Ehrlich, B.E. Regulation of the inositol 1,4,5-trisphosphate receptor type I by O-GlcNAc glycosylation. J. Neurosci. 27, 13813–13821 (2007).

    Article  CAS  Google Scholar 

  20. Francisco, H. et al. O-GlcNAc post-translational modifications regulate the entry of neurons into an axon branching program. Dev. Neurobiol. 69, 162–173 (2009).

    Article  CAS  Google Scholar 

  21. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G.W. & Gong, C.X. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 101, 10804–10809 (2004).

    Article  CAS  Google Scholar 

  22. Ohtsubo, K. & Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006).

    Article  CAS  Google Scholar 

  23. Shafi, R. et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl. Acad. Sci. USA 97, 5735–5739 (2000).

    Article  CAS  Google Scholar 

  24. Rexach, J.E. et al. Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Nat. Chem. Biol. 6, 645–651 (2010).

    Article  CAS  Google Scholar 

  25. Lamarre-Vincent, N. & Hsieh-Wilson, L.C. Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J. Am. Chem. Soc. 125, 6612–6613 (2003).

    Article  CAS  Google Scholar 

  26. Hagiwara, M. et al. Coupling of hormonal stimulation and transcription via the cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A. Mol. Cell. Biol. 13, 4852–4859 (1993).

    Article  CAS  Google Scholar 

  27. Zhou, Z. et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 52, 255–269 (2006).

    Article  CAS  Google Scholar 

  28. Wu, G.Y., Deisseroth, K. & Tsien, R.W. Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA 98, 2808–2813 (2001).

    Article  CAS  Google Scholar 

  29. Plath, N. et al. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437–444 (2006).

    Article  CAS  Google Scholar 

  30. Egan, M.F. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269 (2003).

    Article  CAS  Google Scholar 

  31. Wayman, G.A. et al. Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50, 897–909 (2006).

    Article  CAS  Google Scholar 

  32. Ohshima, T. et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl. Acad. Sci. USA 93, 11173–11178 (1996).

    Article  CAS  Google Scholar 

  33. Fleischmann, A. et al. Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. J. Neurosci. 23, 9116–9122 (2003).

    Article  CAS  Google Scholar 

  34. Aguado, F. et al. The CREB/CREM transcription factors negatively regulate early synaptogenesis and spontaneous network activity. J. Neurosci. 29, 328–333 (2009).

    Article  CAS  Google Scholar 

  35. Tucker, K.L., Meyer, M. & Barde, Y.A. Neurotrophins are required for nerve growth during development. Nat. Neurosci. 4, 29–37 (2001).

    Article  CAS  Google Scholar 

  36. Zhang, L.I. & Poo, M.M. Electrical activity and development of neural circuits. Nat. Neurosci. 4 Suppl: 1207–1214 (2001).

    Article  CAS  Google Scholar 

  37. Viosca, J., Lopez de Armentia, M., Jancic, D. & Barco, A. Enhanced CREB-dependent gene expression increases the excitability of neurons in the basal amygdala and primes the consolidation of contextual and cued fear memory. Learn. Mem. 16, 193–197 (2009).

    Article  Google Scholar 

  38. Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).

    Article  CAS  Google Scholar 

  39. Han, J.H. et al. Neuronal competition and selection during memory formation. Science 316, 457–460 (2007).

    Article  CAS  Google Scholar 

  40. Bartsch, D., Casadio, A., Karl, K.A., Serodio, P. & Kandel, E.R. CREB1 encodes a nuclear activator, a repressor and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell 95, 211–223 (1998).

    Article  CAS  Google Scholar 

  41. Zhou, Y. et al. CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat. Neurosci. 12, 1438–1443 (2009).

    Article  CAS  Google Scholar 

  42. Bourtchouladze, R. et al. Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learn. Mem. 5, 365–374 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiong, W. et al. Anisomycin activates p38 MAP kinase to induce LTD in mouse primary visual cortex. Brain Res. 1085, 68–76 (2006).

    Article  CAS  Google Scholar 

  44. Yang, X. et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451, 964–969 (2008).

    Article  CAS  Google Scholar 

  45. Dentin, R., Hedrick, S., Xie, J., Yates, J. III & Montminy, M. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 319, 1402–1405 (2008).

    Article  CAS  Google Scholar 

  46. Comerford, K.M. et al. Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc. Natl. Acad. Sci. USA 100, 986–991 (2003).

    Article  CAS  Google Scholar 

  47. Lu, Q., Hutchins, A.E., Doyle, C.M., Lundblad, J.R. & Kwok, R.P. Acetylation of cAMP-responsive element-binding protein (CREB) by CREB-binding protein enhances CREB-dependent transcription. J. Biol. Chem. 278, 15727–15734 (2003).

    Article  CAS  Google Scholar 

  48. Yang, X., Zhang, F. & Kudlow, J.E. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110, 69–80 (2002).

    Article  CAS  Google Scholar 

  49. Gambetta, M.C., Oktaba, K. & Muller, J. Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325, 93–96 (2009).

    Article  CAS  Google Scholar 

  50. Wearne, S.L. et al. New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience 136, 661–680 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Antoniou (King's College London School of Medicine) for the pA2UCOE-EGFP construct, M. Greenberg (Harvard University) for the pLEMPRA-GOI and pLLX-shRNA constructs, G. Hart (The John Hopkins University School of Medicine) for the OGT-specific antibody, S. Josselyn (University of Toronto) for the p1005-CREB construct, R. Lansford (California Institute of Technology) for the pLenti PGK-H2B-mCherry construct, R. Malenka (Stanford University) and X. Yu (Shanghai Institutes for Biological Sciences) for the pcDNA3-Dkk-1-Flag and Ncad(intra) constructs, P. Qasba (US National Cancer Institute) for the Y289L GalT construct and L. Wells (University of Georgia) for the pDEST-HA-OGA construct. We thank S.-H. Yu (California Institute of Technology) for synthesizing the UDP-ketogalactose substrate and D. Anderson (California Institute of Technology) for providing the fear conditioning apparatus. We thank A. Silva for a critical reading of the manuscript. This work was supported by grants from the US National Institutes of Health (R01 GM084724 to L.C.H.-W., F31 NS056525 to J.E.R. and National Research Service Award Training Grant 5T32 GM07737 to P.M.C.).

Author information

Authors and Affiliations

Authors

Contributions

L.C.H.-W. designed, directed and coordinated the project. P.M.C. and J.E.R. designed and performed the experiments except where otherwise noted. D.E.M. and E.C.P. performed the MS analyses; R.L.N. prepared the HSV. P.M.C., J.E.R. and L.C.H.-W. wrote the manuscript, and all authors participated in editing it.

Corresponding author

Correspondence to Linda C Hsieh-Wilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 8224 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rexach, J., Clark, P., Mason, D. et al. Dynamic O-GlcNAc modification regulates CREB-mediated gene expression and memory formation. Nat Chem Biol 8, 253–261 (2012). https://doi.org/10.1038/nchembio.770

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.770

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing