Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical chaperones assist intracellular folding to buffer mutational variations

Abstract

Hidden genetic variations have the potential to lead to the evolution of new traits. Molecular chaperones, which assist protein folding, may conceal genetic variations in protein-coding regions. Here we investigate whether the chemical milieu of cells has the potential to alleviate intracellular protein folding, a possibility that could implicate osmolytes in concealing genetic variations. We found that the model osmolyte trimethylamine N-oxide (TMAO) can buffer mutations that impose kinetic traps in the folding pathways of two model proteins. Using this information, we rationally designed TMAO-dependent mutants in vivo, starting from a TMAO-independent protein. We show that different osmolytes buffer a unique spectrum of mutations. Consequently, the chemical milieu of cells may alter the folding pathways of unique mutant variants in polymorphic populations and lead to unanticipated spectra of genetic buffering.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical chaperone assists rapid attainment of native structure.
Figure 2: Rationally designing TMAO-dependent conditional activity.
Figure 3: Analysis of TMAO-assisted buffering.
Figure 4: Chemical chaperones have specific spectrum of mutational buffering.
Figure 5: Stress response pathways do not mediate osmolyte-mediated buffering.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. DePristo, M.A., Weinreich, D.M. & Hartl, D.L. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat. Rev. Genet. 6, 678–687 (2005).

    Article  CAS  Google Scholar 

  2. Tokuriki, N. & Tawfik, D.S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

    Article  CAS  Google Scholar 

  3. Camps, M., Herman, A., Loh, E. & Loeb, L.A. Genetic constraints on protein evolution. Crit. Rev. Biochem. Mol. Biol. 42, 313–326 (2007).

    Article  CAS  Google Scholar 

  4. Bajaj, K., Chakrabarti, P. & Varadarajan, R. Mutagenesis-based definitions and probes of residue burial in proteins. Proc. Natl. Acad. Sci. USA 102, 16221–16226 (2005).

    Article  CAS  Google Scholar 

  5. Waddington, C. Canalization of development and the inheritance of acquired characters. Nature 150, 563–565 (1942).

    Article  Google Scholar 

  6. Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D.S. How protein stability and new functions trade off. PLOS Comput. Biol. 4, e1000002 (2008).

    Article  Google Scholar 

  7. Wang, X., Minasov, G. & Shoichet, B.K. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol. 320, 85–95 (2002).

    Article  CAS  Google Scholar 

  8. Moczek, A.P. On the origins of novelty in development and evolution. Bioessays 30, 432–447 (2008).

    Article  Google Scholar 

  9. Povolotskaya, I.S. & Kondrashov, F.A. Sequence space and the ongoing expansion of the protein universe. Nature 465, 922–926 (2010).

    Article  CAS  Google Scholar 

  10. Rutherford, S.L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    Article  CAS  Google Scholar 

  11. Lindquist, S. Protein folding sculpting evolutionary change. Cold Spring Harb. Symp. Quant. Biol. 74, 103–108 (2010).

    Article  Google Scholar 

  12. Queitsch, C., Sangster, T.A. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 417, 618–624 (2002).

    Article  CAS  Google Scholar 

  13. Ignatova, Z. & Gierasch, L.M. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc. Natl. Acad. Sci. USA 103, 13357–13361 (2006).

    Article  CAS  Google Scholar 

  14. Nascimento, C., Leandro, J., Tavares de Almeida, I. & Leandro, P. Modulation of the activity of newly synthesized human phenylalanine hydroxylase mutant proteins by low-molecular-weight compounds. Protein J. 27, 392–400 (2008).

    Article  CAS  Google Scholar 

  15. Schultz, T., Liu, J., Capasso, P. & de Marco, A. The solubility of recombinant proteins expressed in Escherichia coli is increased by otsA and otsB co-transformation. Biochem. Biophys. Res. Commun. 355, 234–239 (2007).

    Article  CAS  Google Scholar 

  16. Street, T.O., Krukenberg, K.A., Rosgen, J., Bolen, D.W. & Agard, D.A. Osmolyte-induced conformational changes in the Hsp90 molecular chaperone. Protein Sci. 19, 57–65 (2010).

    CAS  PubMed  Google Scholar 

  17. Diamant, S., Eliahu, N., Rosenthal, D. & Goloubinoff, P. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276, 39586–39591 (2001).

    Article  CAS  Google Scholar 

  18. Bolen, D.W. & Baskakov, I.V. The osmophobic effect: natural selection of a thermodynamic force in protein folding. J. Mol. Biol. 310, 955–963 (2001).

    Article  CAS  Google Scholar 

  19. Konopka, M.C., Shkel, I.A., Cayley, S., Record, M.T. & Weisshaar, J.C. Crowding and confinement effects on protein diffusion in vivo. J. Bacteriol. 188, 6115–6123 (2006).

    Article  CAS  Google Scholar 

  20. Eggers, D.K. & Valentine, J.S. Crowding and hydration effects on protein conformation: a study with sol-gel encapsulated proteins. J. Mol. Biol. 314, 911–922 (2001).

    Article  CAS  Google Scholar 

  21. Ando, T. & Skolnick, J. Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. Proc. Natl. Acad. Sci. USA 107, 18457–18462 (2010).

    Article  CAS  Google Scholar 

  22. Kerner, M.J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122, 209–220 (2005).

    Article  CAS  Google Scholar 

  23. Wang, J.D., Michelitsch, M.D. & Weissman, J.S. GroEL-GroES–mediated protein folding requires an intact central cavity. Proc. Natl. Acad. Sci. USA 95, 12163–12168 (1998).

    Article  CAS  Google Scholar 

  24. Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. & Somero, G.N. Living with water stress: evolution of osmolyte systems. Science 217, 1214–1222 (1982).

    Article  CAS  Google Scholar 

  25. Chakraborty, K. et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell 9, 112–122 (2010).

    Article  Google Scholar 

  26. Kimata, Y. & Kohno, K. Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cells. Curr. Opin. Cell Biol. 23, 135–142 (2011).

    Article  CAS  Google Scholar 

  27. Jonikas, M.C. et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693–1697 (2009).

    Article  CAS  Google Scholar 

  28. Hong, J. & Gierasch, L.M. Macromolecular crowding remodels the energy landscape of a protein by favoring a more compact unfolded state. J. Am. Chem. Soc. 132, 10445–10452 (2010).

    Article  CAS  Google Scholar 

  29. Holthauzen, L.M., Rosgen, J. & Bolen, D.W. Hydrogen bonding progressively strengthens upon transfer of the protein urea-denatured state to water and protecting osmolytes. Biochemistry 49, 1310–1318 (2010).

    Article  CAS  Google Scholar 

  30. Wolf, E. et al. Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell 94, 439–449 (1998).

    Article  CAS  Google Scholar 

  31. Ramakrishnan, C. & Ramachandran, G.N. Stereochemical criteria for polypeptide and protein chain conformations. II. Allowed conformations for a pair of peptide units. Biophys. J. 5, 909–933 (1965).

    Article  CAS  Google Scholar 

  32. Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic Acids Res. 33, W382–W388 (2005).

    Article  CAS  Google Scholar 

  33. Tartaglia, G.G. & Vendruscolo, M. The Zyggregator method for predicting protein aggregation propensities. Chem. Soc. Rev. 37, 1395–1401 (2008).

    Article  CAS  Google Scholar 

  34. Bernard, P. et al. The F plasmid CcdB protein induces efficient ATP-dependent DNA cleavage by gyrase. J. Mol. Biol. 234, 534–541 (1993).

    Article  CAS  Google Scholar 

  35. Bajaj, K. et al. Structural correlates of the temperature sensitive phenotype derived from saturation mutagenesis studies of CcdB. Biochemistry 47, 12964–12973 (2008).

    Article  CAS  Google Scholar 

  36. Dao-Thi, M.H. et al. Molecular basis of gyrase poisoning by the addiction toxin CcdB. J. Mol. Biol. 348, 1091–1102 (2005).

    Article  CAS  Google Scholar 

  37. Gunasekera, T.S., Csonka, L.N. & Paliy, O. Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses. J. Bacteriol. 190, 3712–3720 (2008).

    Article  CAS  Google Scholar 

  38. Meury, J. & Kohiyama, M. Role of heat shock protein DnaK in osmotic adaptation of Escherichia coli. J. Bacteriol. 173, 4404–4410 (1991).

    Article  CAS  Google Scholar 

  39. Singer, M.A. & Lindquist, S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1, 639–648 (1998).

    Article  CAS  Google Scholar 

  40. Rod, M.L., Alam, K.Y., Cunningham, P.R. & Clark, D.P. Accumulation of trehalose by Escherichia coli K-12 at high osmotic pressure depends on the presence of amber suppressors. J. Bacteriol. 170, 3601–3610 (1988).

    Article  CAS  Google Scholar 

  41. Woodruff, P.J. et al. Trehalose is required for growth of Mycobacterium smegmatis. J. Biol. Chem. 279, 28835–28843 (2004).

    Article  CAS  Google Scholar 

  42. Honda, Y., Tanaka, M. & Honda, S. Trehalose extends longevity in the nematode Caenorhabditis elegans. Aging Cell 9, 558–569 (2010).

    Article  CAS  Google Scholar 

  43. Ben-Zvi, A., Miller, E.A. & Morimoto, R.I. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Natl. Acad. Sci. USA 106, 14914–14919 (2009).

    Article  CAS  Google Scholar 

  44. Mu, T.W. et al. Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134, 769–781 (2008).

    Article  CAS  Google Scholar 

  45. Ong, D.S., Mu, T.W., Palmer, A.E. & Kelly, J.W. Endoplasmic reticulum Ca2+ increases enhance mutant glucocerebrosidase proteostasis. Nat. Chem. Biol. 6, 424–432 (2010).

    Article  CAS  Google Scholar 

  46. Tang, Y.C. et al. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125, 903–914 (2006).

    Article  CAS  Google Scholar 

  47. Loris, R. et al. Crystal structure of CcdB, a topoisomerase poison from E. coli. J. Mol. Biol. 285, 1667–1677 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Council of Scientific and Industrial Research (CSIR) EMPOWER program and in part by grants from the Wellcome Trust–Department of Biotechnology India alliance. K.C. acknowledges CSIR for funds to the Institute of Genomics and Integrative Biology and infrastructural support. We thank R. Varadarajan (Indian Institute of Science) for the CcdB mutant library, J. Weissman (University of California San Francisco) for the ymj003 strain and U. Hartl and M. Hayer-Hartl (Max Planck Institute of Biochemistry) for their generous gifts of DM-MBP mutant plasmids. We acknowledge the National BioResource Project–E. coli at the National Institute of Genetics (Japan) for providing strains from the Keio Collection.

Author information

Authors and Affiliations

Authors

Contributions

K.C., A.B. and K.S. wrote the manuscript. A.B., K.S. and N.K. performed the experiments. A.B., K.S., N.K.,V.D., N.B., A.R. and S.M. generated the reagents. K.C. and S.S. supervised the work.

Corresponding author

Correspondence to Kausik Chakraborty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 2337 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, A., Saxena, K., Kasturia, N. et al. Chemical chaperones assist intracellular folding to buffer mutational variations. Nat Chem Biol 8, 238–245 (2012). https://doi.org/10.1038/nchembio.768

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.768

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing