Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Timing facilitated site transfer of an enzyme on DNA

Abstract

Many enzymes that react with specific sites in DNA have the property of facilitated diffusion, in which the DNA chain is used as a conduit to accelerate site location. Despite the importance of such mechanisms in gene regulation and DNA repair, there have been few viable approaches to elucidate the microscopic process of facilitated diffusion. Here we describe a new method in which a small-molecule trap (uracil) is used to clock a DNA repair enzyme as it hops and slides between damaged sites in DNA. The 'molecular clock' provides unprecedented information: the mean length for DNA sliding, the one-dimensional diffusion constant, the maximum hopping radius and the time frame for DNA hopping events. In addition, the data establish that the DNA phosphate backbone is a sufficient requirement for DNA sliding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The molecular clock approach for timing pathways for facilitated diffusion on DNA.
Figure 2: Facilitated site transfer by hUNG.
Figure 3: Pslide′ and Phop′ as functions of site spacing and strand positioning of uracils.
Figure 4: Site-transfer dependence with increasing salt and in the context of single-stranded DNA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Riggs, A.D., Bourgeois, S. & Cohn, M. The lac repressor-operator interaction. III. Kinetic studies. J. Mol. Biol. 53, 401–417 (1970).

    Article  CAS  Google Scholar 

  2. Berg, O.G., Winter, R.B. & Von Hippel, P.H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20, 6929–6948 (1981).

    Article  CAS  Google Scholar 

  3. Gowers, D.M., Wilson, G.G. & Halford, S.E. Measurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA. Proc. Natl. Acad. Sci. USA 102, 15883–15888 (2005).

    Article  CAS  Google Scholar 

  4. Stanford, N.P., Szczelkun, M.D., Marko, J.F. & Halford, S.E. One- and three-dimensional pathways for proteins to reach specific DNA sites. EMBO J. 19, 6546–6557 (2000).

    Article  CAS  Google Scholar 

  5. Hedglin, M. & O'Brien, P.J. Human alkyladenine DNA glycosylase employs a processive search for DNA damage. Biochemistry 47, 11434–11445 (2008).

    Article  CAS  Google Scholar 

  6. Sidorenko, V.S. & Zharkov, D.O. Correlated cleavage of damaged DNA by bacterial and human 8-oxoguanine-DNA glycosylases. Biochemistry 47, 8970–8976 (2008).

    Article  CAS  Google Scholar 

  7. Porecha, R.H. & Stivers, J.T. Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils. Proc. Natl. Acad. Sci. USA 105, 10791–10796 (2008).

    Article  CAS  Google Scholar 

  8. Terry, B.J., Jack, W.E. & Modrich, P. Facilitated diffusion during catalysis by EcoRI endonuclease. Nonspecific interactions in EcoRI catalysis. J. Biol. Chem. 260, 13130–13137 (1985).

    CAS  PubMed  Google Scholar 

  9. Elf, J., Li, G. & Xie, X.S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191–1194 (2007).

    Article  CAS  Google Scholar 

  10. Dowd, D.R. & Lloyd, R.S. Site-directed mutagenesis of the T4 endonuclease V gene: the role of arginine-3 in the target search. Biochemistry 28, 8699–8705 (1989).

    Article  CAS  Google Scholar 

  11. Hedglin, M. & O'Brien, P.J. Hopping enables a DNA repair glycosylase to search both strands and bypass a bound protein. ACS Chem. Biol. 5, 427–436 (2010).

    Article  CAS  Google Scholar 

  12. Tafvizi, A., Huang, F., Fersht, A.R., Mirny, L.A. & van Oijen, A.M. A single-molecule characterization of p53 search on DNA. Proc. Natl. Acad. Sci. USA 11, 563–568 (2010).

    Google Scholar 

  13. Komazin-Meredith, G., Mirchev, R., Golan, D.E., van Oijen, A.M. & Coen, D.M. Hopping of a processivity factor on DNA revealed by single-molecule assays of diffusion. Proc. Natl. Acad. Sci. USA 105, 10721–10726 (2008).

    Article  CAS  Google Scholar 

  14. Kad, N.M., Wang, H., Kennedy, G.G., Warshaw, D.M. & Van Houten, B. Collaborative dynamic DNA scanning by nucleotide excision repair proteins investigated by single- molecule imaging of quantum-dot-labeled proteins. Mol. Cell 37, 702–713 (2010).

    Article  CAS  Google Scholar 

  15. Gorman, J., Plys, A.J., Visnapuu, M., Alani, E. & Greene, E.C. Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice. Nat. Struct. Mol. Biol. 17, 932–938 (2010).

    Article  CAS  Google Scholar 

  16. Blainey, P.C. et al. Nonspecifically bound proteins spin while diffusing along DNA. Nat. Struct. Mol. Biol. 16, 1224–1229 (2009).

    Article  CAS  Google Scholar 

  17. Blainey, P.C., van Oijen, A.M., Banerjee, A., Verdine, G.L. & Xie, X.S. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc. Natl. Acad. Sci. USA 103, 5752–5757 (2006).

    Article  CAS  Google Scholar 

  18. Wang, Y.M., Austin, R.H. & Cox, E.C. Single molecule measurements of repressor protein 1D diffusion on DNA. Phys. Rev. Lett. 97, 048302 (2006).

    Article  CAS  Google Scholar 

  19. Gorman, J. et al. Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. Mol. Cell 28, 359–370 (2007).

    Article  CAS  Google Scholar 

  20. Dunn, A.R., Kad, N.M., Nelson, S.R., Warshaw, D.M. & Wallace, S.S. Single Qdot-labeled glycosylase molecules use a wedge amino acid to probe for lesions while scanning along DNA. Nucleic Acids Res. 1, 7487–7498 (2011).

    Article  Google Scholar 

  21. Wang, Y.M. & Austin,, R.H. Single-molecule imaging of LacI diffusing along nonspecific DNA. in Biophysics of DNA-Protein Interactions From Single Molecules to Biological Systems (eds. Williams, M.C. & Maher, J.L.) 9–37 (Springer, 2011).

  22. Maul, R.W. & Gearhart, P.J. AID and somatic hypermutation. in Advances in Immunology (ed. Frederick W. Alt) 159–191 (Academic Press, 2010).

  23. Griller, D. & Ingold, K.U. Free-radical clocks. Acc. Chem. Res. 13, 317–323 (1980).

    Article  CAS  Google Scholar 

  24. Fishbein, J.C. & Jencks, W.P. Elimination reactions of β-cyano thioethers: evidence for a carbanion intermediate and a change in rate-limiting step. J. Am. Chem. Soc. 110, 5075–5086 (1988).

    Article  CAS  Google Scholar 

  25. Amyes, T.L. & Jencks, W.P. Lifetimes of oxocarbenium ions in aqueous solution from common ion inhibition of the solvolysis of α-azido ethers by added azide ion. J. Am. Chem. Soc. 111, 7888–7900 (1989).

    Article  CAS  Google Scholar 

  26. Xiao, G. et al. Crystal structure of Escherichia coli uracil DNA glycosylase and its complexes with uracil and glycerol: Structure and glycosylase mechanism revisited. Proteins 35, 13–24 (1999).

    Article  CAS  Google Scholar 

  27. Jiang, Y.L., Krosky, D.J., Seiple, L. & Stivers, J.T. Uracil-directed ligand tethering: an efficient strategy for uracil DNA glycosylase (UNG) inhibitor development. J. Am. Chem. Soc. 127, 17412–17420 (2005).

    Article  CAS  Google Scholar 

  28. Berg, H.C. Random Walks in Biology (Princeton University Press, 1993).

  29. Belotserkovskii, B.P. & Zarling, D.A. Analysis of a one-dimensional random walk with irreversible losses at each step: applications for protein movement on DNA. J. Theor. Biol. 226, 195–203 (2004).

    Article  CAS  Google Scholar 

  30. Halford, S.E. & Marko, J.F. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 32, 3040–3052 (2004).

    Article  CAS  Google Scholar 

  31. Schurr, J.M. The one-dimensional diffusion coefficient of proteins absorbed on DNA: hydrodynamic considerations. Biophys. Chem. 9, 413–414 (1979).

    Article  CAS  Google Scholar 

  32. Bagchi, B., Blainey, P.C. & Xie, X.S. Diffusion constant of a nonspecifically bound protein undergoing curvilinear motion along DNA. J. Phys. Chem. B 112, 6282–6284 (2008).

    Article  CAS  Google Scholar 

  33. Bruner, S.D., Norman, D.P. & Verdine, G.L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403, 859–866 (2000).

    Article  CAS  Google Scholar 

  34. Kuznetsov, N.A., Koval, V. & Fedorova, O. Mechanism of recognition and repair of damaged DNA by human 8-oxoguanine DNA glycosylase hOGG1. Biochemistry (Mosc.) 76, 118–130 (2011).

    Article  CAS  Google Scholar 

  35. Kuznetsov, N.A. et al. Kinetic conformational analysis of human 8-oxoguanine-DNA glycosylase. J. Biol. Chem. 282, 1029–1038 (2007).

    Article  CAS  Google Scholar 

  36. Cao, C., Jiang, Y.L., Stivers, J.T. & Song, F. Dynamic opening of DNA during the enzymatic search for a damaged base. Nat. Struct. Mol. Biol. 11, 1230–1236 (2004).

    Article  CAS  Google Scholar 

  37. Parker, J.B. et al. Enzymatic capture of an extrahelical thymine in the search for uracil in DNA. Nature 449, 433–437 (2007).

    Article  CAS  Google Scholar 

  38. Friedman, J.I., Majumdar, A. & Stivers, J.T. Nontarget DNA binding shapes the dynamic landscape for enzymatic recognition of DNA damage. Nucleic Acids Res. 37, 3493–3500 (2009).

    Article  CAS  Google Scholar 

  39. Parker, J.B. & Stivers, J.T. Dynamics of uracil and 5-fluorouracil in DNA. Biochemistry 50, 612–617 (2011).

    Article  CAS  Google Scholar 

  40. Kampmann, M. Obstacle bypass in protein motion along DNA by two-dimensional rather than one-dimensional sliding. J. Biol. Chem. 279, 38715–38720 (2004).

    Article  CAS  Google Scholar 

  41. Nishida, K., Ando, Y. & Kawamura, H. Diffusion coefficients of anticancer drugs and compounds having a similar structure at 30 °C. Colloid Polym. Sci. 261, 70–73 (1983).

    Article  CAS  Google Scholar 

  42. Young, M.A., Ravishanker, G. & Beveridge, D.L. A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation. Biophys. J. 73, 2313–2336 (1997).

    Article  CAS  Google Scholar 

  43. Krosky, D.J., Song, F. & Stivers, J.T. The origins of high-affinity enzyme binding to an extrahelical DNA base. Biochemistry 44, 5949–5959 (2005).

    Article  CAS  Google Scholar 

  44. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Parker (Harvard Medical School) for purified hUNG used in this study. This work was supported by US National Institutes of Health grant GM056834.

Author information

Authors and Affiliations

Authors

Contributions

J.D.S. performed all experiments. J.D.S. and J.T.S. analyzed the data and wrote the paper.

Corresponding author

Correspondence to James T Stivers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 976 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schonhoft, J., Stivers, J. Timing facilitated site transfer of an enzyme on DNA. Nat Chem Biol 8, 205–210 (2012). https://doi.org/10.1038/nchembio.764

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.764

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing