Microbial metabolic exchange—the chemotype-to-phenotype link


The function of microbial interactions is to enable microorganisms to survive by establishing a homeostasis between microbial neighbors and local environments. A microorganism can respond to environmental stimuli using metabolic exchange—the transfer of molecular factors, including small molecules and proteins. Microbial interactions not only influence the survival of the microbes but also have roles in morphological and developmental processes of the organisms themselves and their neighbors. This, in turn, shapes the entire habitat of these organisms. Here we highlight our current understanding of metabolic exchange as well as the emergence of new technologies that are allowing us to eavesdrop on microbial conversations comprising dozens to hundreds of secreted metabolites that control the behavior, survival and differentiation of members of the community. The goal of the rapidly advancing field studying multifactorial metabolic exchange is to devise a microbial 'Rosetta stone' in order to understand the language by which microbial interactions are negotiated and, ultimately, to control the outcome of these conversations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Microbial interactions.
Figure 2: Percentages of the predicted ORFs used in microbial interactions.
Figure 3: Chemical diversity of quorum-sensing molecules.
Figure 4: Chemical diversity of metabolic exchange factors.
Figure 5: Cell differentiation of Bacillus subtilis at the colony and cellular levels.
Figure 6: Ecological roles of microbial metabolic exchange.
Figure 7: MALDI-IMS links chemistry to bacterial phenotypes.


  1. 1

    Newman, D.J. & Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70, 461–477 (2007).

  2. 2

    Banat, I.M., Makkar, R.S. & Cameotra, S.S. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53, 495–508 (2000).

  3. 3

    Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).

  4. 4

    Hasan, F., Shah, A.A. & Hameed, A. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39, 235–251 (2006).

  5. 5

    Fujinami, S. & Fujisawa, M. Industrial applications of alkaliphiles and their enzymes–past, present and future. Environ. Technol. 31, 845–856 (2010).

  6. 6

    Fusetani, N. Antifouling marine natural products. Nat. Prod. Rep. 28, 400–410 (2011).

  7. 7

    Dayan, F.E., Cantrell, C.L. & Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem. 17, 4022–4034 (2009).

  8. 8

    Babalola, O.O. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32, 1559–1570 (2010).

  9. 9

    Omura, S. et al. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA 98, 12215–12220 (2001).

  10. 10

    Ikeda, H. et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21, 526–531 (2003).

  11. 11

    Bentley, S.D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).

  12. 12

    Ohnishi, Y. et al. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190, 4050–4060 (2008).

  13. 13

    Nett, M., Ikeda, H. & Moore, B.S. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep. 26, 1362–1384 (2009).

  14. 14

    Snyder, E.E. et al. PATRIC: the VBI PathoSystems Resource Integration Center. Nucleic Acids Res. 35, D401–D406 (2007).

  15. 15

    Lowery, C.A., Dickerson, T.J. & Janda, K.D. Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chem. Soc. Rev. 37, 1337–1346 (2008).

  16. 16

    Straight, P.D. & Kolter, R. Interspecies chemical communication in bacterial development. Annu. Rev. Microbiol. 63, 99–118 (2009). This review discusses the influence that a bacterium has within a community through participating in metabolic exchange.

  17. 17

    Ng, W.L. & Bassler, B.L. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43, 197–222 (2009). This paper discusses the quorum-sensing networks in Vibrio spp.

  18. 18

    Schuster, M. & Greenberg, E.P. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296, 73–81 (2006). This work discusses quorum-sensing regulation in P. aeruginosa.

  19. 19

    Antunes, L.C., Ferreira, R.B., Buckner, M.M. & Finlay, B.B. Quorum sensing in bacterial virulence. Microbiology 156, 2271–2282 (2010).

  20. 20

    Little, A.E., Robinson, C.J., Peterson, S.B., Raffa, K.F. & Handelsman, J. Rules of engagement: interspecies interactions that regulate microbial communities. Annu. Rev. Microbiol. 62, 375–401 (2008).

  21. 21

    Kaeberlein, T., Lewis, K. & Epstein, S.S. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296, 1127–1129 (2002).

  22. 22

    D'Onofrio, A. et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17, 254–264 (2010).

  23. 23

    Lewis, K., Epstein, S., D'Onofrio, A. & Ling, L.L. Uncultured microorganisms as a source of secondary metabolites. J. Antibiot. (Tokyo) 63, 468–476 (2010).

  24. 24

    Rigali, S. et al. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep. 9, 670–675 (2008).

  25. 25

    van Wezel, G.P. & McDowall, K.J. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat. Prod. Rep. 28, 1311–1333 (2011).

  26. 26

    López, D. & Kolter, R. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol. Rev. 34, 134–149 (2010). This review discusses the cascades of cell differentiation pathways that are triggered by metabolic exchange.

  27. 27

    Straight, P.D., Willey, J.M. & Kolter, R. Interactions between Streptomyces coelicolor and Bacillus subtilis: Role of surfactants in raising aerial structures. J. Bacteriol. 188, 4918–4925 (2006).

  28. 28

    Angelini, T.E., Roper, M., Kolter, R., Weitz, D.A. & Brenner, M.P. Bacillus subtilis spreads by surfing on waves of surfactant. Proc. Natl. Acad. Sci. USA 106, 18109–18113 (2009).

  29. 29

    Davies, J. Everything depends on everything else. Clin. Microbiol. Infect. 15 (suppl. 1): 1–4 (2009).

  30. 30

    Yim, G., Wang, H.H. & Davies, J. Antibiotics as signalling molecules. Phil. Trans. R. Soc. Lond. B 362, 1195–1200 (2007).

  31. 31

    Fajardo, A. & Martinez, J.L. Antibiotics as signals that trigger specific bacterial responses. Curr. Opin. Microbiol. 11, 161–167 (2008).

  32. 32

    Shapiro, J.A. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52, 81–104 (1998). This review is one of the first to discuss bacterial populations as multidimensional organisms.

  33. 33

    Strauss, E. Grand challenge commentary: Exploiting single-cell variation for new antibiotics. Nat. Chem. Biol. 6, 873–875 (2010).

  34. 34

    Winter, J.M., Behnken, S. & Hertweck, C. Genomics-inspired discovery of natural products. Curr. Opin. Chem. Biol. 15, 22–31 (2011).

  35. 35

    Gil-Turnes, M.S., Hay, M.E. & Fenical, W. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246, 116–118 (1989). This provides an excellent example of the roles of metabolic exchange factors produced by symbiotic bacteria in host survival.

  36. 36

    Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 26, 338–362 (2009).

  37. 37

    Hentschel, U. et al. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68, 4431–4440 (2002).

  38. 38

    Currie, C.R., Scott, J.A., Summerbell, R.C. & Malloch, D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398, 701–704 (1999).

  39. 39

    Currie, C.R. et al. Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science 299, 386–388 (2003).

  40. 40

    Oh, D.C., Poulsen, M., Currie, C.R. & Clardy, J. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat. Chem. Biol. 5, 391–393 (2009).

  41. 41

    Schultz, T.R. & Brady, S.G. Major evolutionary transitions in ant agriculture. Proc. Natl. Acad. Sci. USA 105, 5435–5440 (2008).

  42. 42

    Haeder, S., Wirth, R., Herz, H. & Spiteller, D. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc. Natl. Acad. Sci. USA 106, 4742–4746 (2009).

  43. 43

    Schoenian, I. et al. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc. Natl. Acad. Sci. USA 108, 1955–1960 (2011). This work used new methodologies to characterize the metabolic exchange between microbial communities within the nests of leaf-cutting ants.

  44. 44

    Guarner, F. & Malagelada, J.R. Gut flora in health and disease. Lancet 361, 512–519 (2003).

  45. 45

    Grice, E.A. & Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).

  46. 46

    Kau, A.L., Ahern, P.P., Griffin, N.W., Goodman, A.L. & Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).

  47. 47

    Valm, A.M. et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc. Natl. Acad. Sci. USA 108, 4152–4157 (2011). This paper represents an example of the use of labeling and imaging approaches to visualize and differentiate phylotypes of microbial communities.

  48. 48

    Rickard, A.H. et al. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol. Microbiol. 60, 1446–1456 (2006).

  49. 49

    Schloss, P.D. & Handelsman, J. The last word: books as a statistical metaphor for microbial communities. Annu. Rev. Microbiol. 61, 23–34 (2007).

  50. 50

    Tringe, S.G. & Rubin, E.M. Metagenomics: DNA sequencing of environmental samples. Nat. Rev. Genet. 6, 805–814 (2005).

  51. 51

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

  52. 52

    Baltz, R.H. Renaissance in antibacterial discovery from actinomycetes. Curr. Opin. Pharmacol. 8, 557–563 (2008).

  53. 53

    Moter, A. & Gobel, U.B. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J. Microbiol. Methods 41, 85–112 (2000).

  54. 54

    de Jong, A., van Heel, A.J., Kok, J. & Kuipers, O.P. BAGEL2: mining for bacteriocins in genomic data. Nucleic Acids Res. 38, W647–W651 (2010).

  55. 55

    Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W. & Huson, D.H. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. 33, 5799–5808 (2005).

  56. 56

    Ansari, M.Z., Yadav, G., Gokhale, R.S. & Mohanty, D. NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res. 32, W405–W413 (2004).

  57. 57

    Medema, M.H. et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal sequences. Nucleic Acids Res. 39, W339–W346 (2011). This paper describes the development of the most comprehensive software pipeline available at present that is capable of identifying potential biosynthetic gene clusters for the whole range of known secondary metabolite classes.

  58. 58

    Watrous, J.D. & Dorrestein, P.C. Imaging mass spectrometry in microbiology. Nat. Rev. Microbiol. 9, 683–694 (2011). This thorough review covers IMS techniques and their applicability in microbiology.

  59. 59

    Liu, W.T. et al. Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 107, 16286–16290 (2010). This is the first work to apply IMS to discover specific factors that are active in microbial intraspecies interactions.

  60. 60

    Yang, Y.L., Xu, Y., Straight, P. & Dorrestein, P.C. Translating metabolic exchange with imaging mass spectrometry. Nat. Chem. Biol. 5, 885–887 (2009). This is the original report on the development of IMS to study microbial metabolic exchange.

  61. 61

    Gonzalez, D. et al. Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. Microbiology published online, doi:10.1099/mic.0.048736-0 (30 June 2011).

  62. 62

    Yang, Y.L. et al. Connecting chemotypes and phenotypes of cultured marine microbial assemblages by imaging mass spectrometry. Angew. Chem. Int. Edn. Engl. 50, 5839–5842 (2011). This paper highlights the utility of applying IMS to the investigation of metabolic exchange in microbial assemblages.

  63. 63

    McLean, J.S. et al. Investigations of structure and metabolism within Shewanella oneidensis MR-1 biofilms. J. Microbiol. Methods 74, 47–56 (2008).

  64. 64

    McLean, J.S., Ona, O.N. & Majors, P.D. Correlated biofilm imaging, transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy. ISME J. 2, 121–131 (2008).

  65. 65

    Boedicker, J.Q., Vincent, M.E. & Ismagilov, R.F. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew. Chem. Int. Edn. Engl. 48, 5908–5911 (2009).

  66. 66

    Kersten, R.D. et al. A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat. Chem. Biol. 7, 794–802 (2011).

  67. 67

    De Sordi, L. & Muhlschlegel, F.A. Quorum sensing and fungal-bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res. 9, 990–999 (2009).

  68. 68

    Shank, E.A. & Kolter, R. New developments in microbial interspecies signaling. Curr. Opin. Microbiol. 12, 205–214 (2009). This review focuses on how bacterial small molecules modulate interspecies interactions.

  69. 69

    Craig, L., Pique, M.E. & Tainer, J.A. Type IV pilus structure and bacterial pathogenicity. Nat. Rev. Microbiol. 2, 363–378 (2004).

  70. 70

    Proft, T. & Baker, E.N. Pili in Gram-negative and Gram-positive bacteria - structure, assembly and their role in disease. Cell. Mol. Life Sci. 66, 613–635 (2009).

  71. 71

    Dubey, G.P. & Ben-Yehuda, S. Intercellular nanotubes mediate bacterial communication. Cell 144, 590–600 (2011).

  72. 72

    Gorby, Y.A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 103, 11358–11363 (2006).

  73. 73

    Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005).

  74. 74

    DiGiuseppe Champion, P.A. & Cox, J.S. Protein secretion systems in Mycobacteria. Cell. Microbiol. 9, 1376–1384 (2007).

  75. 75

    Hayes, C.S., Aoki, S.K. & Low, D.A. Bacterial contact-dependent delivery systems. Annu. Rev. Genet. 44, 71–90 (2010). This comprehensive review discusses the contact-dependent systems that microbes use to interact with each other and their environment.

  76. 76

    Holland, I.B. The extraordinary diversity of bacterial protein secretion mechanisms. Methods Mol. Biol. 619, 1–20 (2010).

  77. 77

    Natale, P., Bruser, T. & Driessen, A.J. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane–distinct translocases and mechanisms. Biochim. Biophys. Acta 1778, 1735–1756 (2008).

  78. 78

    Lebeer, S., Vanderleyden, J. & De Keersmaecker, S.C. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat. Rev. Microbiol. 8, 171–184 (2010).

  79. 79

    Ubbink, J. & Schar-Zammaretti, P. Probing bacterial interactions: integrated approaches combining atomic force microscopy, electron microscopy and biophysical techniques. Micron 36, 293–320 (2005).

  80. 80

    Haurat, M.F. et al. Selective sorting of cargo proteins into bacterial membrane vesicles. J. Biol. Chem. 286, 1269–1276 (2011).

  81. 81

    Mashburn, L.M. & Whiteley, M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437, 422–425 (2005).

  82. 82

    Roze, L.V., Chanda, A. & Linz, J.E. Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes. Fungal Genet. Biol. 48, 35–48 (2011).

  83. 83

    Kai, M. et al. Bacterial volatiles and their action potential. Appl. Microbiol. Biotechnol. 81, 1001–1012 (2009).

  84. 84

    Minerdi, D., Bossi, S., Gullino, M.L. & Garibaldi, A. Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ. Microbiol. 11, 844–854 (2009).

  85. 85

    Schulz, S. & Dickschat, J.S. Bacterial volatiles: the smell of small organisms. Nat. Prod. Rep. 24, 814–842 (2007).

  86. 86

    Borges-Walmsley, M.I. & Walmsley, A.R. cAMP signalling in pathogenic fungi: control of dimorphic switching and pathogenicity. Trends Microbiol. 8, 133–141 (2000).

  87. 87

    Boyer, M. & Wisniewski-Dye, F. Cell-cell signalling in bacteria: not simply a matter of quorum. FEMS Microbiol. Ecol. 70, 1–19 (2009).

  88. 88

    Pesavento, C. & Hengge, R. Bacterial nucleotide-based second messengers. Curr. Opin. Microbiol. 12, 170–176 (2009).

  89. 89

    Ratcliff, W.C. & Denison, R.F. Microbiology. Alternative actions for antibiotics. Science 332, 547–548 (2011). This article discusses the possibility that there may be several roles for antibiotics in the native environment of microbes.

  90. 90

    Singh, A. & Del Poeta, M. Lipid signalling in pathogenic fungi. Cell. Microbiol. 13, 177–185 (2011).

  91. 91

    Vendeville, A., Winzer, K., Heurlier, K., Tang, C.M. & Hardie, K.R. Making 'sense' of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat. Rev. Microbiol. 3, 383–396 (2005).

  92. 92

    Putman, M., van Veen, H.W. & Konings, W.N. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64, 672–693 (2000).

  93. 93

    Boyd, E.F. & Brussow, H. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol. 10, 521–529 (2002).

  94. 94

    Coleman, D.C. et al. Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. J. Gen. Microbiol. 135, 1679–1697 (1989).

  95. 95

    Kuroda, M. et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240 (2001).

  96. 96

    Flemming, H.C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

  97. 97

    Kearns, D.B. & Losick, R. Swarming motility in undomesticated Bacillus subtilis. Mol. Microbiol. 49, 581–590 (2003).

  98. 98

    López, D., Vlamakis, H., Losick, R. & Kolter, R. Cannibalism enhances biofilm development in Bacillus subtilis. Mol. Microbiol. 74, 609–618 (2009).

Download references


The authors would like to acknowledge J. Yang, W. Moree and C. Rath (University of California, San Diego) for providing critical reviews of the manuscript and E. Shank (Harvard Medical School) for insightful discussions. The P.C.D. laboratory is supported by US National Institutes of Health grants GM094802, GM086283 and AI095125 and by the Beckman Foundation. The K.P. laboratory is supported by US National Institutes of Health grants GM057045 and AI095125.

Author information

Correspondence to Pieter C Dorrestein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data Set 1

Supplementary Data Set 1 (XLSX 2459 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Phelan, V., Liu, W., Pogliano, K. et al. Microbial metabolic exchange—the chemotype-to-phenotype link. Nat Chem Biol 8, 26–35 (2012). https://doi.org/10.1038/nchembio.739

Download citation

Further reading