Abstract
The collection of chemical techniques that can be used to attach synthetic groups to proteins has expanded substantially in recent years. Each of these approaches allows new protein targets to be addressed, leading to advances in biological understanding, new protein-drug conjugates, targeted medical imaging agents and hybrid materials with complex functions. The protein modification reactions in current use vary widely in their inherent site selectivity, overall yields and functional group compatibility. Some are more amenable to large-scale bioconjugate production, and a number of techniques can be used to label a single protein in a complex biological mixture. This review examines the way in which experimental circumstances influence one's selection of an appropriate protein modification strategy. It also provides a simple decision tree that can narrow down the possibilities in many instances. The review concludes with example studies that examine how this decision process has been applied in different contexts.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
DISC-3D: dual-hydrogel system enhances optical imaging and enables correlative mass spectrometry imaging of invading multicellular tumor spheroids
Scientific Reports Open Access 31 July 2023
-
Selective and predicable amine conjugation sites by kinetic characterization under excess reagents
Scientific Reports Open Access 27 October 2021
-
Single electron transfer-based peptide/protein bioconjugations driven by biocompatible energy input
Communications Chemistry Open Access 13 November 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Albery, W.J. & Knowles, J.R. Free-energy profile for the reaction catalyzed by triosephosphate isomerase. Biochemistry 15, 5627–5631 (1976).
Nelson, N. & Ben-Shem, A. The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 5, 971–982 (2004).
White, M.A. & Anderson, R.G. Signaling networks in living cells. Annu. Rev. Pharmacol. Toxicol. 45, 587–603 (2005).
Honjo, T. & Habu, S. Origin of immune diversity: genetic variation and selection. Annu. Rev. Biochem. 54, 803–830 (1985).
Buehler, M.J. & Yung, Y.C. How protein materials balance strength, robustness, and adaptability. HFSP J. 4, 26–40 (2010).
Pauly, H. On the constitution of histidine I: announcement. Hoppe Seylers Z. Physiol. Chem. 42, 508–518 (1904).
Alley, S.C., Okeley, N.M. & Senter, P.D. Antibody-drug conjugates: targeted drug delivery for cancer. Curr. Opin. Chem. Biol. 14, 529–537 (2010).
Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. & Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008).
Cecconi, C., Shank, E.A., Bustamante, C. & Marqusee, S. Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005).
Stephanopoulos, N., Tong, G.J., Hsiao, S.C. & Francis, M.B. Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano 4, 6014–6020 (2010).
Banerjee, D., Liu, A.P., Voss, N.R., Schmid, S.L. & Finn, M.G. Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles. ChemBioChem 11, 1273–1279 (2010).
Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified staudinger reaction. Science 287, 2007–2010 (2000).
Rostovtsev, V.V., Green, L.G., Fokin, V.V. & Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41, 2596–2599 (2002).
Wang, Q. et al. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2003).
Hong, V., Steinmetz, N.F., Manchester, M. & Finn, M.G. Labeling live cells by copper-catalyzed alkyne-azide Click chemistry. Bioconjug. Chem. 21, 1912–1916 (2010).
Speers, A.E., Adam, G.C. & Cravatt, B.F. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 125, 4686–4687 (2003).
Agard, N.J., Prescher, J.A. & Bertozzi, C.R.A. Strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).
Agard, N.J., Baskin, J.M., Prescher, J.A., Lo, A. & Bertozzi, C.R. A comparative study of bioorthogonal reactions with azides. ACS Chem. Biol. 1, 644–648 (2006).
Laughlin, S.T., Baskin, J.M., Amacher, S.L. & Bertozzi, C.R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008).
Jencks, W.P. Studies on the mechanism of oxime and semicarbazone formation. J. Am. Chem. Soc. 81, 475–481 (1959).
Cornish, V.W., Hahn, K.M. & Schultz, P.G. Site-specific protein modification using a ketone handle. J. Am. Chem. Soc. 118, 8150–8151 (1996).
Mahal, L.K., Yarema, K.J. & Bertozzi, C.R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997).
Dirksen, A., Hackeng, T.M. & Dawson, P.E. Nucleophilic catalysis of oxime ligation. Angew. Chem. Int. Ed. Engl. 45, 7581–7584 (2006).
Kalia, J. & Raines, R. Hydrolytic stability of hydrazones and oximes. Angew. Chem. Int. Ed. Engl. 47, 7523–7526 (2008).
Sletten, E.M. & Bertozzi, C.R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl. 48, 6974–6998 (2009).
Hermanson, G.T. Bioconjugate Techniques, 2nd edn. (Academic Press, 2008).
Tilley, S.D., Joshi, N.S. & Francis, M.B. Proteins: chemistry and chemical reactivity. in Wiley Encyclopedia of Chemical Biology 1–16 (Wiley, 2008).
Baker, D.P. et al. N-terminally pegylated human interferon-β-1a with improved pharmacokinetic properties and in vivo efficacy in a melanoma angiogenesis model. Bioconjug. Chem. 17, 179–188 (2006).
Cooper, J.A., Walker, S.B. & Pollard, T.D. Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization. J. Muscle Res. Cell Motil. 4, 253–262 (1983).
Antos, J.M. & Francis, M.B. Selective tryptophan modification with rhodium carbenoids in aqueous solution. J. Am. Chem. Soc. 126, 10256–10257 (2004).
Popp, B.V. & Ball, Z.T. Structure-selective modification of aromatic side chains with dirhodium metallopeptide catalysts. J. Am. Chem. Soc. 132, 6660–6662 (2010).
Hooker, J.M., Kovacs, E.W. & Francis, M.B. Interior surface modification of bacteriophage MS2. J. Am. Chem. Soc. 126, 3718–3719 (2004).
Joshi, N.S., Whitaker, L.R. & Francis, M.B. Three-component mannich-type reaction for selective tyrosine bioconjugation. J. Am. Chem. Soc. 126, 15942–15943 (2004).
Tilley, S.D. & Francis, M.B. Tyrosine-selective protein alkylation using p-allylpalladium complexes. J. Am. Chem. Soc. 128, 1080–1081 (2006).
Chalker, J.M., Bernardes, G.J.L., Lin, Y.A. & Davis, B.G. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem. Asian J. 4, 630–640 (2009).
Doolittle, R.F. Redundancies in protein sequence. in Prediction of Protein Structures and the Principles of Protein Conformation (ed. Fasman, G.D.) 599–624 (Plenum Press, 1989).
Bernardes, G.J., Chalker, J.M., Errey, J.C. & Davis, B.G. Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins. J. Am. Chem. Soc. 130, 5052–5053 (2008).
Bernardes, G.J.L. et al. From disulfide- to thioether-linked glycoproteins. Angew. Chem. Int. Ed. Engl. 47, 2244–2247 (2008).
Lin, Y.A., Chalker, J.M., Floyd, N., Bernardes, G.J.L. & Davis, B.G. Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. J. Am. Chem. Soc. 130, 9642–9643 (2008).
Smith, M.E.B. et al. Protein modification, bioconjugation, and disulfide bridging using bromomaleimides. J. Am. Chem. Soc. 132, 1960–1965 (2010).
Ryan, C.P. et al. Tunable reagents for multi-functional bioconjugation: reversible or permanent chemical modification of proteins and peptides by control of maleimide hydrolysis. Chem. Commun. (Camb.) 47, 5452–5454 (2011).
Geoghegan, K.F. & Stroh, J.G. Site-directed conjugation of nonpeptide groups to peptides and proteins via periodate-oxidation of a 2-amino alcohol—application to modification at N-terminal serine. Bioconjug. Chem. 3, 138–146 (1992).
Gilmore, J.M., Scheck, R.A., Esser-Kahn, A.P., Joshi, N.S. & Francis, M.B. N-terminal protein modification through a biomimetic transamination reaction. Angew. Chem. Int. Ed. Engl. 45, 5307–5311 (2006).
Scheck, R.A., Dedeo, M.T., Iavarone, A.T. & Francis, M.B. Optimization of a biomimetic transamination reaction. J. Am. Chem. Soc. 130, 11762–11770 (2008).
Witus, L.S. et al. Identification of highly reactive sequences for PLP-mediated bioconjugation using a combinatorial peptide library. J. Am. Chem. Soc. 132, 16812–16817 (2010).
Tam, J.P., Yu, Q.T. & Miao, Z.W. Orthogonal ligation strategies for peptide and protein. Biopolymers 51, 311–332 (1999).
Li, X.F., Zhang, L.S., Hall, S.E. & Tam, J.P. A new ligation method for N-terminal tryptophan-containing peptides using the Pictet-Spengler reaction. Tetrahedron Lett. 41, 4069–4073 (2000).
Hirel, P.H., Schmitter, M.J., Dessen, P., Fayat, G. & Blanquet, S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc. Natl. Acad. Sci. USA 86, 8247–8251 (1989).
Dawson, P.E., Muir, T., Clark-Lewis, I. & Kent, S. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).
Muir, T.W. Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 72, 249–289 (2003).
Tolbert, T.J. & Wong, C. Intein-mediated synthesis of proteins containing carbohydrates and other molecular probes. J. Am. Chem. Soc. 122, 5421–5428 (2000).
Valiyaveetil, F.I., Sekedat, M., MacKinnon, R. & Muir, T.W. Glycine as a D-amino acid surrogate in the k-selectivity filter. Proc. Natl. Acad. Sci. USA 101, 17045–17049 (2004).
Xu, R., Ayers, B., Cowburn, D. & Muir, T.W. Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc. Natl. Acad. Sci. USA 96, 388–393 (1999).
Ottesen, J.J., Huse, M., Sekedat, M.D. & Muir, T.W. Semisynthesis of phosphovariants of Smad2 reveals a substrate preference of the activated TßRI kinase. Biochemistry 43, 5698–5706 (2004).
Kho, Y. et al. Tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc. Natl. Acad. Sci. USA 101, 12479–12484 (2004).
Duckworth, B.P., Xu, J., Taton, T.A., Guo, A. & Distefano, M.D. Site-specific, covalent attachment of proteins to a solid surface. Bioconjug. Chem. 17, 967–974 (2006).
Gauchet, C., Labadie, G.R. & Poulter, C.D. Regio- and chemoselective covalent immobilization of proteins through unnatural amino acids. J. Am. Chem. Soc. 128, 9274–9275 (2006).
Xie, J. & Schultz, P.G. A chemical toolkit for proteins: an expanded genetic code. Nat. Rev. Mol. Cell Biol. 7, 775–782 (2006).
Link, A.J., Mock, M.L. & Tirrell, D.A. Non-canonical amino acids in protein engineering. Curr. Opin. Biotechnol. 14, 603–609 (2003).
Deiters, A. et al. Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J. Am. Chem. Soc. 125, 11782–11783 (2003).
Kiick, K.L., Saxon, E., Tirrell, D.A. & Bertozzi, C.R. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl. Acad. Sci. USA 99, 19–24 (2002).
Strable, E. et al. Unnatural amino acid incorporation into virus-like particles. Bioconjug. Chem. 19, 866–875 (2008).
van Hest, J.C.M., Kiick, K.L. & Tirrell, D.A. Efficient incorporation of unsaturated methionine analogues into proteins in vivo. J. Am. Chem. Soc. 122, 1282–1288 (2000).
Mehl, R.A. et al. Generation of a bacterium with a 21 amino acid genetic code. J. Am. Chem. Soc. 125, 935–939 (2003).
Carrico, Z.M., Romanini, D.W., Mehl, R.A. & Francis, M.B. Oxidative coupling of peptides to a virus capsid containing unnatural amino acids. Chem. Commun. (Camb.) 1205–1207 (2008).
Beatty, K.E. et al. Live-cell imaging of cellular proteins by a strain-promoted azide-alkyne cycloaddition. ChemBioChem 11, 2092–2095 (2010).
Lee, H.S., Guo, J., Lemke, E.A., Dimla, R.D. & Schultz, P.G. Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae. J. Am. Chem. Soc. 131, 12921–12923 (2009).
Chin, J.W., Martin, A.B., King, D.S., Wang, L. & Schultz, P.G. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 11020–11024 (2002).
Gautier, A., Deiters, A. & Chin, J.W. Light-activated kinases enable temporal dissection of signaling networks in living cells. J. Am. Chem. Soc. 133, 2124–2127 (2011).
Evans, M.J. & Cravatt, B.F. Mechanism-based profiling of enzyme families. Chem. Rev. 106, 3279–3301 (2006).
Tsukiji, S., Miyagawa, M., Takaoka, Y., Tamura, T. & Hamachi, I. Ligand-directed tosyl chemistry for protein labeling in vivo. Nat. Chem. Biol. 5, 341–343 (2009).
Hughes, C.C. et al. Marinopyrrole A target elucidation by acyl dye transfer. J. Am. Chem. Soc. 131, 12094–12096 (2009).
Koshi, Y. et al. Target-specific chemical acylation of lectins by ligand-tethered DMAP catalysts. J. Am. Chem. Soc. 130, 245–251 (2008).
Chen, I., Howarth, M., Lin, W. & Ting, A.Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2, 99–104 (2005).
Sato, H., Ikeda, M., Suzuki, K. & Hirayama, K. Site-specific modification of interleukin-2 by the combined use of genetic engineering techniques and transglutaminase. Biochemistry 35, 13072–13080 (1996).
Fernández-Suárez, M. et al. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat. Biotechnol. 25, 1483–1487 (2007).
Popp, M.W., Antos, J.M., Grotenbreg, G.M., Spooner, E. & Ploegh, H.L. Sortagging: a versatile method for protein labeling. Nat. Chem. Biol. 3, 707–708 (2007).
Zhou, Z. et al. Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem. Biol. 22, 337–346 (2007).
Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).
Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).
Los, G.V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).
Meier, J.L., Mercer, A.C., Rivera, H. Jr. & Burkart, M.D. Synthesis and evaluation of bioorthogonal pantetheine analogues for in vivo protein modification. J. Am. Chem. Soc. 128, 12174–12184 (2006).
Carrico, I.S., Carlson, B.L. & Bertozzi, C.R. Introducing genetically encoded aldehydes into proteins. Nat. Chem. Biol. 3, 321–322 (2007).
Wu, P. et al. Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc. Natl. Acad. Sci. USA 106, 3000–3005 (2009).
Oh, I.K., Mok, H. & Park, T.G. Folate immobilized and PEGylated adenovirus for retargeting to tumor cells. Bioconjug. Chem. 17, 721–727 (2006).
Raja, K.S. et al. Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacromolecules 4, 472–476 (2003).
Kovacs, E.W. et al. Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. Bioconjug. Chem. 18, 1140–1147 (2007).
Tong, G.J., Hsiao, S.C., Carrico, Z.M. & Francis, M.B. Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J. Am. Chem. Soc. 131, 11174–11178 (2009).
Stephanopoulos, N., Carrico, Z.M. & Francis, M.B. Nanoscale integration of sensitizing chromophores and porphyrins with bacteriophage MS2. Angew. Chem. Int. Ed. Engl. 48, 9498–9502 (2009).
Garimella, P.D., Datta, A., Romanini, D.W., Raymond, K.N. & Francis, M.B. Multivalent, high-relaxivity MRI contrast agents using rigid cysteine-reactive gadolinium complexes. J. Am. Chem. Soc. 133, 14704–14709 (2011).
Wu, W., Hsiao, S., Carrico, Z. & Francis, M. Genome-free viral capsids as multivalent carriers for taxol delivery. Angew. Chem. Int. Ed. Engl. 48, 9493–9497 (2009).
Hooker, J.M., Esser-Kahn, A.P. & Francis, M.B. Modification of aniline containing proteins using an oxidative coupling strategy. J. Am. Chem. Soc. 128, 15558–15559 (2006).
Mastico, R.A., Talbot, S.J. & Stockley, P.G. Multiple presentation of foreign peptides on the surface of an RNA-free spherical bacteriophage capsid. J. Gen. Virol. 74, 541–548 (1993).
Guo, J., Melançon, C.E., Lee, H.S., Groff, D. & Schultz, P.G. Evolution of amber suppressor tRNAs for efficient bacterial production of unnatural amino acid-containing proteins. Angew. Chem. Int. Ed. Engl. 48, 9148–9151 (2009).
Shangguan, D. et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA 103, 11838–11843 (2006).
Suci, P.A., Varpness, Z., Gillitzer, E., Douglas, T. & Young, M. Targeting and photodynamic killing of a microbial pathogen using protein cage architectures functionalized with a photosensitizer. Langmuir 23, 12280–12286 (2007).
Dedeo, M.T., Duderstadt, K.E., Berger, J.M. & Francis, M.B. Nanoscale protein assemblies from a circular permutant of the tobacco mosaic virus. Nano Lett. 10, 181–186 (2010).
Destito, G., Yeh, R., Rae, C.S., Finn, M. & Manchester, M. Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem. Biol. 14, 1152–1162 (2007).
Nam, Y.S. et al. Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nat. Nanotechnol. 5, 340–344 (2010).
Esser-Kahn, A.P., Iavarone, A.T. & Francis, M.B. Metallothionein-cross-linked hydrogels for the selective removal of heavy metals from water. J. Am. Chem. Soc. 130, 15820–15822 (2008).
Green, D.E., Morris, T.W., Green, J., Cronan, J.E. & Guest, J.R. Purification and properties of the lipoate protein ligase of Escherichia coli. Biochem. J. 309, 853–862 (1995).
Howarth, M., Takao, K., Hayashi, Y. & Ting, A.Y. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl. Acad. Sci. USA 102, 7583–7588 (2005).
Acknowledgements
Our efforts to develop new bioconjugation strategies, capsid-based delivery agents, and proteinpolymer hybrid materials have been generously supported by the US National Institutes of Health (GM072700), the Department of Defense Breast Cancer Research Program (BC061995) and the US National Science Foundation (0449772). While writing this manuscript, N.S. was supported by the Director of the Office of Science, Materials Sciences and Engineering Division, US Department of Energy under contract no. DE-AC02-05CH11231.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Stephanopoulos, N., Francis, M. Choosing an effective protein bioconjugation strategy. Nat Chem Biol 7, 876–884 (2011). https://doi.org/10.1038/nchembio.720
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchembio.720
This article is cited by
-
DISC-3D: dual-hydrogel system enhances optical imaging and enables correlative mass spectrometry imaging of invading multicellular tumor spheroids
Scientific Reports (2023)
-
Functionalizing DNA origami to investigate and interact with biological systems
Nature Reviews Materials (2022)
-
Designed protein multimerization and polymerization for functionalization of proteins
Biotechnology Letters (2022)
-
Biomineralization-inspired magnetic nanoflowers for sensitive miRNA detection based on exonuclease-assisted target recycling amplification
Microchimica Acta (2022)
-
Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation
Nature Chemistry (2021)