Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Versatility of biological non-heme Fe(II) centers in oxygen activation reactions

Abstract

Oxidase and oxygenase enzymes allow the use of relatively unreactive O2 in biochemical reactions. Many of the mechanistic strategies used in nature for this key reaction are represented within the 2-histidine-1-carboxylate facial triad family of non-heme Fe(II)-containing enzymes. The open face of the metal coordination sphere opposite the three endogenous ligands participates directly in the reaction chemistry. Here, data from several studies are presented showing that reductive O2 activation within this family is initiated by substrate (and in some cases cosubstrate or cofactor) binding, which then allows coordination of O2 to the metal. From this starting point, the O2 activation process and the reactions with substrates diverge broadly. The reactive species formed in these reactions have been proposed to encompass four oxidation states of iron and all forms of reduced O2 as well as several of the reactive oxygen species that derive from O-O bond cleavage.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Oxygen activation by extradiol dioxygenases.
Figure 2: Oxygen activation by Rieske cis-diol dioxygenases.
Figure 3: Oxygen activation by 2-oxo acid dioxygenases.
Figure 4: Oxygen activation by tetrahydropterin-dependent hydroxylases.
Figure 5: Oxygen activation in the mechanism of formation of isopenicillin N by IPNS.
Figure 6: Oxygen activation by the flexible 2-His+Asp/Glu facial triad motif.

Accession codes

Accessions

Protein Data Bank

References

  1. Ozer, A. & Bruick, R.K. Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Nat. Chem. Biol. 3, 144–153 (2007).

    CAS  PubMed  Article  Google Scholar 

  2. Kirk, T.K. in Microbial Degradation of Organic Compounds Vol. 13 (ed. Gibson, D.T.) 399–438 (Marcel Dekker, Inc., New York, 1984).

    Google Scholar 

  3. Hakemian, A.S. & Rosenzweig, A.C. The biochemistry of methane oxidation. Annu. Rev. Biochem. 76, 223–241 (2007).

    CAS  PubMed  Article  Google Scholar 

  4. Gibson, D.T. & Parales, R.E. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol. 11, 236–243 (2000).

    CAS  PubMed  Article  Google Scholar 

  5. Baldwin, J.E. & Abraham, E. Biosynthesis of penicillins and cephalosporins. Nat. Prod. Rep. 5, 129–145 (1988).

    CAS  PubMed  Article  Google Scholar 

  6. Kershaw, N.J., Caines, M.E.C., Sleeman, M.C. & Schofield, C.J. The enzymology of clavam and carbapenem biosynthesis. Chem. Commun. (Camb) 4251–4263 (2005).

  7. Pau, M.Y.M., Lipscomb, J.D. & Solomon, E.I. Substrate activation for O2 reactions by oxidized metal centers in biology. Proc. Natl. Acad. Sci. USA 104, 18355–18362 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. Hayaishi, O., Katagiri, H. & Rothberg, S. Mechanism of the pyrocatechase reaction. J. Am. Chem. Soc. 77, 5450–5451 (1955).

    CAS  Article  Google Scholar 

  9. Holm, R.H., Kennepohl, P. & Solomon, E.I. Structural and functional aspects of metal sites in biology. Chem. Rev. 96, 2239–2314 (1996).

    CAS  PubMed  Article  Google Scholar 

  10. Costas, M., Mehn, M.P., Jensen, M.P. & Que, L. Jr. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem. Rev. 104, 939–986 (2004).

    CAS  PubMed  Article  Google Scholar 

  11. Siegbahn, P.E.M. & Borowski, T. Modeling enzymatic reactions involving transition metals. Acc. Chem. Res. 39, 729–738 (2006).

    CAS  PubMed  Article  Google Scholar 

  12. Nam, W. Dioxygen activation by metalloenzymes and models. Acc. Chem. Res. 40, 465 (2007).

    CAS  Article  Google Scholar 

  13. Hegg, E.L. & Que, L. The 2-His-1-carboxylate facial triad: an emerging structural motif in mononuclear non-heme iron(II) enzymes. Eur. J. Biochem. 250, 625–629 (1997).

    CAS  PubMed  Article  Google Scholar 

  14. Arciero, D.M. & Lipscomb, J.D. Binding of 17O-labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase-nitrosyl complex. Evidence for direct substrate binding to the active site Fe2+ of extradiol dioxygenases. J. Biol. Chem. 261, 2170–2178 (1986).

    CAS  PubMed  Article  Google Scholar 

  15. Sato, N. et al. Crystal structures of the reaction intermediate and its homologue of an extradiol-cleaving catecholic dioxygenase. J. Mol. Biol. 321, 621–636 (2002).

    CAS  PubMed  Article  Google Scholar 

  16. Boerjan, W., Ralph, J. & Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–549 (2003).

    CAS  PubMed  Article  Google Scholar 

  17. Dagley, S. in The Bacteria Vol. 10 (ed. Sokatch, J.R.) 527–556 (Academic Press, New York, 1986).

    Google Scholar 

  18. Lipscomb, J.D. & Orville, A.M. Mechanistic aspects of dihydroxybenzoate dioxygenases. Met. Ions Biol. Syst. 28, 243–298 (1992).

    CAS  Google Scholar 

  19. Gibson, D.T. in Microbial Metabolism and the Carbon Cycle (eds. Hagedorn, S.R., Hanson, R.S. & Kunz, D.A.) 33–58 (Harwood Academic Publishers, Chur, Switzerland, 1988).

    Google Scholar 

  20. Vaillancourt, F.H., Bolin, J.T. & Eltis, L.D. The ins and outs of ring-cleaving dioxygenases. Crit. Rev. Biochem. Mol. Biol. 41, 241–267 (2006).

    CAS  PubMed  Article  Google Scholar 

  21. Han, S., Eltis, L.D., Timmis, K.N., Muchmore, S.W. & Bolin, J.T. Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science 270, 976–980 (1995).

    CAS  PubMed  Article  Google Scholar 

  22. Senda, T. et al. Three-dimensional structures of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102. J. Mol. Biol. 255, 735–752 (1996).

    CAS  PubMed  Article  Google Scholar 

  23. Shu, L. et al. X-ray absorption spectroscopic studies of the Fe(II) active site of catechol 2,3-dioxygenase. Implications for the extradiol cleavage mechanism. Biochemistry 34, 6649–6659 (1995).

    CAS  PubMed  Article  Google Scholar 

  24. Bugg, T.D.H. Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59, 7075–7101 (2003).

    CAS  Article  Google Scholar 

  25. Kovaleva, E.G., Neibergall, M.B., Chakrabarty, S. & Lipscomb, J.D. Finding intermediates in the O2 activation pathways of non-heme iron oxygenases. Acc. Chem. Res. 40, 475–483 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Sanvoisin, J., Langley, G.J. & Bugg, T.D.H. Mechanism of extradiol catechol dioxygenases: evidence for a lactone intermediate in the 2,3-dihydroxyphenylpropionate 1,2-dioxygenase reaction. J. Am. Chem. Soc. 117, 7836–7837 (1995).

    CAS  Article  Google Scholar 

  27. Deeth, R.J. & Bugg, T.D.H. A density functional investigation of the extradiol cleavage mechanism in non-heme iron catechol dioxygenases. J. Biol. Inorg. Chem. 8, 409–418 (2003).

    CAS  PubMed  Article  Google Scholar 

  28. Siegbahn, P.E.M. & Haeffner, F. Mechanism for catechol ring-cleavage by non-heme iron extradiol dioxygenases. J. Am. Chem. Soc. 126, 8919–8932 (2004).

    CAS  PubMed  Article  Google Scholar 

  29. Kovaleva, E.G. & Lipscomb, J.D. Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates. Science 316, 453–457 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Groce, S.L. & Lipscomb, J.D. Aromatic ring cleavage by homoprotocatechuate 2,3-dioxygenase: role of His200 in the kinetics of interconversion of reaction cycle intermediates. Biochemistry 44, 7175–7188 (2005).

    CAS  PubMed  Article  Google Scholar 

  31. Groce, S.L. & Lipscomb, J.D. Conversion of extradiol aromatic ring-cleaving homoprotocatechuate 2,3-dioxygenase into an intradiol cleaving enzyme. J. Am. Chem. Soc. 125, 11780–11781 (2003).

    CAS  PubMed  Article  Google Scholar 

  32. Gilbson, D.T. Microbial degradation of aromatic compounds. Science 161, 1093–1097 (1968).

    CAS  PubMed  Article  Google Scholar 

  33. Ensley, B.D., Gibson, D.T. & Laborde, A.L. Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 149, 948–954 (1982).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Kauppi, B. et al. Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure 6, 571–586 (1998).

    CAS  PubMed  Article  Google Scholar 

  35. Carredano, E. et al. Substrate binding site of naphthalene 1,2-dioxygenase: functional implications of indole binding. J. Mol. Biol. 296, 701–712 (2000).

    CAS  PubMed  Article  Google Scholar 

  36. Furusawa, Y. et al. Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1. J. Mol. Biol. 342, 1041–1052 (2004).

    CAS  PubMed  Article  Google Scholar 

  37. Friemann, R. et al. Structural insight into the dioxygenation of nitroarene compounds: the crystal structure of nitrobenzene dioxygenase. J. Mol. Biol. 348, 1139–1151 (2005).

    CAS  PubMed  Article  Google Scholar 

  38. Dong, X. et al. Crystal structure of the terminal oxygenase component of cumene dioxygenase from Pseudomonas fluorescens IP01. J. Bacteriol. 187, 2483–2490 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Pavel, E.G., Martins, L.J., Ellis, W.R. Jr. & Solomon, E.I. Magnetic circular dichroism studies of exogenous ligand and substrate binding to the non-heme ferrous active site in phthalate dioxygenase. Chem. Biol. 1, 173–183 (1994).

    CAS  PubMed  Article  Google Scholar 

  40. Ohta, T., Chakrabarty, S., Lipscomb, J.D. & Solomon, E.I. Near-IR MCD of the non-heme ferrous active site in naphthalene 1,2-dioxygenase: correlation to crystallography and structural insight into the mechanism of Rieske dioxygenases. J. Am. Chem. Soc. published online, doi:10.1021/ja074769o (12 January 2008).

  41. Wolfe, M.D., Parales, J.V., Gibson, D.T. & Lipscomb, J.D. Single turnover chemistry and regulation of O2 activation by the oxygenase component of naphthalene 1,2-dioxygenase. J. Biol. Chem. 276, 1945–1953 (2001).

    CAS  PubMed  Article  Google Scholar 

  42. Wolfe, M.D. et al. Benzoate 1,2-dioxygenase from Pseudomonas putida: single turnover kinetics and regulation of a two-component Rieske dioxygenase. Biochemistry 41, 9611–9626 (2002).

    CAS  PubMed  Article  Google Scholar 

  43. Beharry, Z.M. et al. Histidine ligand protonation and redox potential in the Rieske dioxygenases: role of a conserved aspartate in anthranilate 1,2-dioxygenase. Biochemistry 42, 13625–13636 (2003).

    CAS  PubMed  Article  Google Scholar 

  44. Tarasev, M., Rhames, F. & Ballou, D.P. Rates of the phthalate dioxygenase reaction with oxygen are dramatically increased by interactions with phthalate and phthalate oxygenase reductase. Biochemistry 43, 12799–12808 (2004).

    CAS  PubMed  Article  Google Scholar 

  45. Wallar, B.J. & Lipscomb, J.D. Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem. Rev. 96, 2625–2657 (1996).

    CAS  PubMed  Article  Google Scholar 

  46. Groves, J.T. High-valent iron in chemical and biological oxidations. J. Inorg. Biochem. 100, 434–447 (2006).

    CAS  PubMed  Article  Google Scholar 

  47. Tarasev, M. & Ballou, D.P. Chemistry of the catalytic conversion of phthalate into its cis-dihydrodiol during the reaction of oxygen with the reduced form of phthalate dioxygenase. Biochemistry 44, 6197–6207 (2005).

    CAS  PubMed  Article  Google Scholar 

  48. Bassan, A., Blomberg, M.R.A. & Siegbahn, P.E.M. A theoretical study of the cis-dihydroxylation mechanism in naphthalene 1,2-dioxygenase. J. Biol. Inorg. Chem. 9, 439–452 (2004).

    CAS  PubMed  Article  Google Scholar 

  49. Bassan, A., Blomberg, M.R.A., Siegbahn, P.E.M. & Que, L. Jr. Two faces of a biomimetic non-heme HO-Fe(V)=O oxidant: olefin epoxidation versus cis-dihydroxylation. Angew. Chem. Int. Ed. 44, 2939–2941 (2005).

    CAS  Article  Google Scholar 

  50. Wolfe, M.D. & Lipscomb, J.D. Hydrogen peroxide-coupled cis-diol formation catalyzed by naphthalene 1,2-dioxygenase. J. Biol. Chem. 278, 829–835 (2003).

    CAS  PubMed  Article  Google Scholar 

  51. Neibergall, M.B., Stubna, A., Mekmouche, Y., Münck, E. & Lipscomb, J.D. Hydrogen peroxide dependent cis-dihydroxylation of benzoate by fully oxidized benzoate 1,2-dioxygenase. Biochemistry 46, 8004–8016 (2007).

    CAS  PubMed  Article  Google Scholar 

  52. Karlsson, A. et al. Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science 299, 1039–1042 (2003).

    CAS  PubMed  Article  Google Scholar 

  53. Chakrabarty, S., Austin, R.N., Deng, D., Groves, J.T. & Lipscomb, J.D. Radical intermediates in monooxygenase reactions of Rieske dioxygenases. J. Am. Chem. Soc. 129, 3514–3515 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Hausinger, R.P. Fe(II)/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 21–68 (2004).

    CAS  PubMed  Article  Google Scholar 

  55. Elkins, J.M. et al. X-ray crystal structure of Escherichia coli taurine/alpha-ketoglutarate dioxygenase complexed to ferrous iron and substrates. Biochemistry 41, 5185–5192 (2002).

    CAS  PubMed  Article  Google Scholar 

  56. Valegard, K. et al. Structure of a cephalosporin synthase. Nature 394, 805–809 (1998).

    CAS  PubMed  Article  Google Scholar 

  57. Clifton, I.J., Hsueh, L.C., Baldwin, J.E., Harlos, K. & Schofield, C.J. Structure of proline 3-hydroxylase. Evolution of the family of 2-oxoglutarate dependent oxygenases. Eur. J. Biochem. 268, 6625–6636 (2001).

    CAS  PubMed  Article  Google Scholar 

  58. Clifton, I.J. et al. Crystal structure of carbapenem synthase (CarC). J. Biol. Chem. 278, 20843–20850 (2003).

    CAS  PubMed  Article  Google Scholar 

  59. Ryle, M.J., Padmakumar, R. & Hausinger, R.P. Stopped-flow kinetic analysis of Escherichia coli taurine/alpha-ketoglutarate dioxygenase: interactions with alpha-ketoglutarate, taurine, and oxygen. Biochemistry 38, 15278–15286 (1999).

    CAS  PubMed  Article  Google Scholar 

  60. Price, J.C., Barr, E.W., Tirupati, B., Bollinger, J.M. Jr. & Krebs, C. The first direct characterization of a high-valent iron intermediate in the reaction of an α-ketoglutarate-dependent dioxygenase: a high-spin Fe(IV) complex in taurine alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli. Biochemistry 42, 7497–7508 (2003).

    CAS  PubMed  Article  Google Scholar 

  61. Sturgeon, B.E. et al. Reconsideration of X, the diiron intermediate formed during cofactor assembly in E. coli ribonucleotide reductase. J. Am. Chem. Soc. 118, 7551–7557 (1996).

    CAS  Article  Google Scholar 

  62. Lee, S.-K., Fox, B.G., Froland, W.A., Lipscomb, J.D. & Münck, E. A transient intermediate of the methane monooxygenase catalytic cycle containing a FeIVFeIV cluster. J. Am. Chem. Soc. 115, 6450–6451 (1993).

    CAS  Article  Google Scholar 

  63. Price, J.C., Barr, E.W., Hoffart, L.M., Krebs, C. & Bollinger, J.M. Jr. Kinetic dissection of the catalytic mechanism of taurine:alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli. Biochemistry 44, 8138–8147 (2005).

    CAS  PubMed  Article  Google Scholar 

  64. Price, J.C., Barr, E.W., Glass, T.E., Krebs, C. & Bollinger, J.M. Jr. Evidence for hydrogen abstraction from C1 of taurine by the high-spin Fe(IV) intermediate detected during oxygen activation by taurine:alpha-ketoglutarate dioxygenase (TauD). J. Am. Chem. Soc. 125, 13008–13009 (2003).

    CAS  PubMed  Article  Google Scholar 

  65. Proshlyakov, D.A., Henshaw, T.F., Monterosso, G.R., Ryle, M.J. & Hausinger, R.P. Direct detection of oxygen intermediates in the non-heme Fe enzyme taurine/alpha -ketoglutarate dioxygenase. J. Am. Chem. Soc. 126, 1022–1023 (2004).

    CAS  PubMed  Article  Google Scholar 

  66. Riggs-Gelasco, P.J. et al. EXAFS spectroscopic evidence for an Fe:O unit in the Fe(IV) intermediate observed during oxygen activation by taurine:alpha -ketoglutarate dioxygenase. J. Am. Chem. Soc. 126, 8108–8109 (2004).

    CAS  PubMed  Article  Google Scholar 

  67. Johnson-Winters, K., Purpero, V.M., Kavana, M. & Moran, G.R. Accumulation of multiple intermediates in the catalytic cycle of (4-hydroxyphenyl)pyruvate dioxygenase from Streptomyces avermitilis. Biochemistry 44, 7189–7199 (2005).

    CAS  PubMed  Article  Google Scholar 

  68. Galonic, D.P., Vaillancourt, F.H. & Walsh, C.T. Halogenation of unactivated carbon centers in natural product biosynthesis: trichlorination of leucine during barbamide biosynthesis. J. Am. Chem. Soc. 128, 3900–3901 (2006).

    CAS  PubMed  Article  Google Scholar 

  69. Blasiak, L.C., Vaillancourt, F.H., Walsh, C.T. & Drennan, C.L. Crystal structure of the non-heme iron halogenase SyrB2 in syringomycin biosynthesis. Nature 440, 368–371 (2006).

    CAS  PubMed  Article  Google Scholar 

  70. Galonic, D.P., Barr, E.W., Walsh, C.T., Bollinger, J.M. Jr. & Krebs, C. Two interconverting Fe(IV) intermediates in aliphatic chlorination by the halogenase CytC3. Nat. Chem. Biol. 3, 113–116 (2007).

    CAS  PubMed  Article  Google Scholar 

  71. Fujimori, D.G. et al. Spectroscopic evidence for a high-spin Br-Fe(IV)-oxo intermediate in the alpha-ketoglutarate-dependent halogenase CytC3 from Streptomyces. J. Am. Chem. Soc. 129, 13408–13409 (2007).

    CAS  PubMed  Article  Google Scholar 

  72. Fitzpatrick, P.F. Tetrahydropterin-dependent amino acid hydroxylases. Annu. Rev. Biochem. 68, 355–381 (1999).

    CAS  PubMed  Article  Google Scholar 

  73. Andersen, O.A., Stokka, A.J., Flatmark, T. & Hough, E. 2.0 Å resolution crystal structures of the ternary complexes of human phenylalanine hydroxylase catalytic domain with tetrahydrobiopterin and 3-(2-thienyl)-alanine or -norleucine: substrate specificity and molecular motions related to substrate binding. J. Mol. Biol. 333, 747–757 (2003).

    CAS  PubMed  Article  Google Scholar 

  74. Pavon, J.A. & Fitzpatrick, P.F. Insights into the catalytic mechanisms of phenylalanine and tryptophan hydroxylase from kinetic isotope effects on aromatic hydroxylation. Biochemistry 45, 11030–11037 (2006).

    CAS  PubMed  Article  Google Scholar 

  75. Eser, B.E. et al. Direct spectroscopic evidence for a high-spin Fe(IV) intermediate in tyrosine hydroxylase. J. Am. Chem. Soc. 129, 11334–11335 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Bassan, A., Blomberg, M.R.A. & Siegbahn, P.E.M. Mechanism of aromatic hydroxylation by an activated FeIV=O core in tetrahydrobiopterin-dependent hydroxylases. Chem. Eur. J. 9, 4055–4067 (2003).

    CAS  PubMed  Article  Google Scholar 

  77. Koehntop, K.D., Emerson, J.P. & Que, L. Jr. The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes. J. Biol. Inorg. Chem. 10, 87–93 (2005).

    CAS  PubMed  Article  Google Scholar 

  78. Clifton, I.J. et al. Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta -helix fold proteins. J. Inorg. Biochem. 100, 644–669 (2006).

    CAS  PubMed  Article  Google Scholar 

  79. Baldwin, J.E. & Schofield, C. in Chemistry of β-Lactams (ed. Page, M.I.) 1–78 (Blackie, Glasgow, UK, 1992).

    Book  Google Scholar 

  80. Roach, P.L. et al. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature 387, 827–830 (1997).

    CAS  PubMed  Article  Google Scholar 

  81. Brown, C.D., Neidig, M.L., Neibergall, M.B., Lipscomb, J.D. & Solomon, E.I. VTVH-MCD and DFT studies of thiolate bonding to {FeNO}7/{FeO2}8 complexes of isopenicillin N synthase: substrate determination of oxidase versus oxygenase activity in nonheme Fe enzymes. J. Am. Chem. Soc. 129, 7427–7438 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Liu, P. et al. Biochemical and spectroscopic studies on (S)-2-hydroxypropylphosphonic acid epoxidase: a novel mononuclear non-heme iron enzyme. Biochemistry 42, 11577–11586 (2003).

    CAS  PubMed  Article  Google Scholar 

  83. Yan, F. et al. Determination of the substrate binding mode to the active site iron of (S)-2-hydroxypropylphosphonic acid epoxidase using 17O-enriched substrates and substrate analogues. Biochemistry 46, 12628–12638 (2007).

    CAS  PubMed  Article  Google Scholar 

  84. Rocklin, A.M. et al. Role of the nonheme Fe(II) center in the biosynthesis of the plant hormone ethylene. Proc. Natl. Acad. Sci. USA 96, 7905–7909 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. Rocklin, A.M., Kato, K., Liu, H.-w., Que, L. & Lipscomb, J.D. Mechanistic studies of 1-aminocyclopropane-1-carboxylic acid oxidase: single turnover reaction. J. Biol. Inorg. Chem. 9, 171–182 (2004).

    CAS  PubMed  Article  Google Scholar 

  86. Thrower, J., Mirica, L.M., McCusker, K.P. & Klinman, J.P. Mechanistic investigations of 1-aminocyclopropane 1-carboxylic acid oxidase with alternate cyclic and acyclic substrates. Biochemistry 45, 13108–13117 (2006).

    CAS  PubMed  Article  Google Scholar 

  87. Orville, A.M. et al. Thiolate ligation of the active site Fe2+ of isopenicillin N synthase derives from substrate rather than endogenous cysteine: spectroscopic studies of site-specific Cys to Ser mutated enzymes. Biochemistry 31, 4602–4612 (1992).

    CAS  PubMed  Article  Google Scholar 

  88. Chen, V.J. et al. Spectroscopic studies of isopenicillin N synthase. A mononuclear nonheme Fe2+ oxidase with metal coordination sites for small molecules and substrate. J. Biol. Chem. 264, 21677–21681 (1989).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from US National Institutes of Health grant GM24689.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elena G Kovaleva or John D Lipscomb.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kovaleva, E., Lipscomb, J. Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. Nat Chem Biol 4, 186–193 (2008). https://doi.org/10.1038/nchembio.71

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing