Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small-molecule conversion of toxic oligomers to nontoxic β-sheet–rich amyloid fibrils

Abstract

Several lines of evidence indicate that prefibrillar assemblies of amyloid-β (Aβ) polypeptides, such as soluble oligomers or protofibrils, rather than mature, end-stage amyloid fibrils cause neuronal dysfunction and memory impairment in Alzheimer's disease. These findings suggest that reducing the prevalence of transient intermediates by small molecule–mediated stimulation of amyloid polymerization might decrease toxicity. Here we demonstrate the acceleration of Aβ fibrillogenesis through the action of the orcein-related small molecule O4, which directly binds to hydrophobic amino acid residues in Aβ peptides and stabilizes the self-assembly of seeding-competent, β-sheet–rich protofibrils and fibrils. Notably, the O4-mediated acceleration of amyloid fibril formation efficiently decreases the concentration of small, toxic Aβ oligomers in complex, heterogeneous aggregation reactions. In addition, O4 treatment suppresses inhibition of long-term potentiation by Aβ oligomers in hippocampal brain slices. These results support the hypothesis that small, diffusible prefibrillar amyloid species rather than mature fibrillar aggregates are toxic for mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and characterization of compounds that accelerate Aβ42 aggregation.
Figure 2: O4 binds to Aβ42 oligomers and stimulates their conversion into SDS-stable fibrils.
Figure 3: O4 binds to hydrophobic regions in Aβ peptides.
Figure 4: O4 changes the binding of anti-Aβ antibodies to amyloid fibrils.
Figure 5: O4 binds to hydrophobic grooves on the surface of β-sheet–rich Aβ42 fibrils.
Figure 6: O4 reduces Aβ42 toxicity and improves synaptic transmission.
Figure 7: Working model of effects of O4 on spontaneous Aβ42 polymerization.

Similar content being viewed by others

References

  1. Soto, C. et al. β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer′s therapy. Nat. Med. 4, 822–826 (1998).

    Article  CAS  Google Scholar 

  2. Walsh, D.M. & Selkoe, D.J. Aβ oligomers—a decade of discovery. J. Neurochem. 101, 1172–1184 (2007).

    Article  CAS  Google Scholar 

  3. Harper, J.D. & Lansbury, P.T. Jr. Models of amyloid seeding in Alzheimer′s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997).

    Article  CAS  Google Scholar 

  4. Stefani, M. & Dobson, C.M. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81, 678–699 (2003).

    Article  CAS  Google Scholar 

  5. Chimon, S. et al. Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer′s β-amyloid. Nat. Struct. Mol. Biol. 14, 1157–1164 (2007).

    Article  CAS  Google Scholar 

  6. Mastrangelo, I.A. et al. High-resolution atomic force microscopy of soluble Aβ42 oligomers. J. Mol. Biol. 358, 106–119 (2006).

    Article  CAS  Google Scholar 

  7. Ahmed, M. et al. Structural conversion of neurotoxic amyloid-β (1–42) oligomers to fibrils. Nat. Struct. Mol. Biol. 17, 561–567 (2010).

    Article  CAS  Google Scholar 

  8. Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511 (2002).

    Article  CAS  Google Scholar 

  9. Herbst, M. & Wanker, E.E. Therapeutic approaches to polyglutamine diseases: combating protein misfolding and aggregation. Curr. Pharm. Des. 12, 2543–2555 (2006).

    Article  CAS  Google Scholar 

  10. Yang, D.S., Yip, C.M., Huang, T.H., Chakrabartty, A. & Fraser, P.E. Manipulating the amyloid-β aggregation pathway with chemical chaperones. J. Biol. Chem. 274, 32970–32974 (1999).

    Article  CAS  Google Scholar 

  11. Ghanta, J., Shen, C.L., Kiessling, L.L. & Murphy, R.M. A strategy for designing inhibitors of β-amyloid toxicity. J. Biol. Chem. 271, 29525–29528 (1996).

    Article  CAS  Google Scholar 

  12. McLaurin, J. et al. Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat. Med. 12, 801–808 (2006).

    Article  CAS  Google Scholar 

  13. Williams, A.D. et al. Structural properties of Aβ protofibrils stabilized by a small molecule. Proc. Natl. Acad. Sci. USA 102, 7115–7120 (2005).

    Article  CAS  Google Scholar 

  14. Conway, K.A., Rochet, J.C., Bieganski, R.M. & Lansbury, P.T. Jr. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294, 1346–1349 (2001).

    Article  CAS  Google Scholar 

  15. Walsh, D.M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  Google Scholar 

  16. Necula, M., Kayed, R., Milton, S. & Glabe, C.G. Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem. 282, 10311–10324 (2007).

    Article  CAS  Google Scholar 

  17. Ehrnhoefer, D.E. et al. Green tea (–)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington′s disease models. Hum. Mol. Genet. 15, 2743–2751 (2006).

    Article  CAS  Google Scholar 

  18. Ehrnhoefer, D.E. et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol. 15, 558–566 (2008).

    Article  CAS  Google Scholar 

  19. Bieschke, J. et al. EGCG remodels mature alpha-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc. Natl. Acad. Sci. USA 107, 7710–7715 (2010).

    Article  CAS  Google Scholar 

  20. LeVine, H. The challenge of inhibiting Aβ polymerization. Curr. Med. Chem. 9, 1121–1133 (2002).

    Article  CAS  Google Scholar 

  21. Kim, W. & Hecht, M.H. Generic hydrophobic residues are sufficient to promote aggregation of the Alzheimer′s Aβ42 peptide. Proc. Natl. Acad. Sci. USA 103, 15824–15829 (2006).

    Article  CAS  Google Scholar 

  22. Heiser, V. et al. Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington′s disease by using an automated filter retardation assay. Proc. Natl. Acad. Sci. USA 99 Suppl 4: 16400–16406 (2002).

    Article  CAS  Google Scholar 

  23. Beecken, H. et al. Orcein and litmus. Biotech. Histochem. 78, 289–302 (2003).

    Article  CAS  Google Scholar 

  24. Walsh, D.M. et al. Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J. Biol. Chem. 274, 25945–25952 (1999).

    Article  CAS  Google Scholar 

  25. Lührs, T. et al. 3D structure of Alzheimer′s amyloid-β (1–42) fibrils. Proc. Natl. Acad. Sci. USA 102, 17342–17347 (2005).

    Article  Google Scholar 

  26. LeVine, H. III. Quantification of β-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 309, 274–284 (1999).

    Article  CAS  Google Scholar 

  27. Yang, W., Dunlap, J.R., Andrews, R.B. & Wetzel, R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11, 2905–2917 (2002).

    Article  CAS  Google Scholar 

  28. Ma, Q.L. et al. Antibodies against β-amyloid reduce Aβ oligomers, glycogen synthase kinase-3β activation and ô phosphorylation in vivo and in vitro. J. Neurosci. Res. 83, 374–384 (2006).

    Article  CAS  Google Scholar 

  29. Paz, M.A., Fluckiger, R., Boak, A., Kagan, H.M. & Gallop, P.M. Specific detection of quinoproteins by redox-cycling staining. J. Biol. Chem. 266, 689–692 (1991).

    CAS  PubMed  Google Scholar 

  30. Lambert, M.P. et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453 (1998).

    Article  CAS  Google Scholar 

  31. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    Article  CAS  Google Scholar 

  32. Beutling, U., Stading, K., Stradal, T. & Frank, R. Large-scale analysis of protein-protein interactions using cellulose-bound peptide arrays. Adv. Biochem. Eng. Biotechnol. 110, 115–152 (2008).

    CAS  PubMed  Google Scholar 

  33. Caputo, C.B., Fraser, P.E., Sobel, I.E. & Kirschner, D.A. Amyloid-like properties of a synthetic peptide corresponding to the carboxy terminus of β-amyloid protein precursor. Arch. Biochem. Biophys. 292, 199–205 (1992).

    Article  CAS  Google Scholar 

  34. Feng, B.Y. et al. Small-molecule aggregates inhibit amyloid polymerization. Nat. Chem. Biol. 4, 197–199 (2008).

    Article  CAS  Google Scholar 

  35. Kim, K.S. Production and characterization of monoclonal antibodies reactive to synthetic cerebrovascular amyloid peptide. Neurosci. Res. Commun. 2, 121–130 (1988).

    CAS  Google Scholar 

  36. Habicht, G. et al. Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing Aβ protofibrils. Proc. Natl. Acad. Sci. USA 104, 19232–19237 (2007).

    Article  CAS  Google Scholar 

  37. Friesner, R.A. et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49, 6177–6196 (2006).

    Article  CAS  Google Scholar 

  38. Hansen, M.B., Nielsen, S.E. & Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119, 203–210 (1989).

    Article  CAS  Google Scholar 

  39. Wang, Q., Walsh, D.M., Rowan, M.J., Selkoe, D.J. & Anwyl, R. Block of long-term potentiation by naturally secreted and synthetic amyloid β-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J. Neurosci. 24, 3370–3378 (2004).

    Article  CAS  Google Scholar 

  40. Hamaguchi, T., Ono, K. & Yamada, M. Anti-amyloidogenic therapies: strategies for prevention and treatment of Alzheimer′s disease. Cell. Mol. Life Sci. 63, 1538–1552 (2006).

    Article  CAS  Google Scholar 

  41. Pallitto, M.M., Ghanta, J., Heinzelman, P., Kiessling, L.L. & Murphy, R.M. Recognition sequence design for peptidyl modulators of β-amyloid aggregation and toxicity. Biochemistry 38, 3570–3578 (1999).

    Article  CAS  Google Scholar 

  42. Reixach, N., Crooks, E., Ostresh, J.M., Houghten, R.A. & Blondelle, S.E. Inhibition of β-amyloid-induced neurotoxicity by imidazopyridoindoles derived from a synthetic combinatorial library. J. Struct. Biol. 130, 247–258 (2000).

    Article  CAS  Google Scholar 

  43. Howlett, D.R. et al. Inhibition of fibril formation in β-amyloid peptide by a novel series of benzofurans. Biochem. J. 340, 283–289 (1999).

    Article  CAS  Google Scholar 

  44. Tomiyama, T. et al. Rifampicin prevents the aggregation and neurotoxicity of amyloid β protein in vitro. Biochem. Biophys. Res. Commun. 204, 76–83 (1994).

    Article  CAS  Google Scholar 

  45. Laurén, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W. & Strittmatter, S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 457, 1128–1132 (2009).

    Article  Google Scholar 

  46. Harmeier, A. et al. Role of amyloid-β glycine 33 in oligomerization, toxicity, and neuronal plasticity. J. Neurosci. 29, 7582–7590 (2009).

    Article  CAS  Google Scholar 

  47. McLaurin, J., Golomb, R., Jurewicz, A., Antel, J.P. & Fraser, P.E. Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid β peptide and inhibit aβ-induced toxicity. J. Biol. Chem. 275, 18495–18502 (2000).

    Article  CAS  Google Scholar 

  48. Ladiwala, A.R. et al. Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Aβ into off-pathway conformers. J. Biol. Chem. 285, 24228–24237 (2010).

    Article  CAS  Google Scholar 

  49. Cheng, I.H. et al. Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem. 282, 23818–23828 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Kostka, G. Grelle and S. Rautenberg for technical assistance; A. Otto for analysis of compound mixtures by MS; and M. Peters for expert discussions. The research leading to these results has received funding from the European Commission FP7 grants EUROSPIN (241498) and SYNSYS (242167) and from the European Integrated Projects APOPIS (503330) and EUROSCA (503304) as well as from the Initiative and Networking Fund of the Helmholtz Association (MSBN, TP3, TP5) and the Helmholtz Alliance for Mental Health in an Ageing Society to E.E.W. Furthermore, this work was supported by grants from Deutsche Forschungsgemeinschaft (DFG) (WA 1151/5), Bundesministerium für Bildung und Forschung (BMBF) (NGFN1, 01KW0015; NGFN2, 01GR0471; BioFuture, 0311853; GO-Bio, 0313881) to E.E.W., BMBF (NGFN-Plus, 01GS08132) to J.B. and E.E.W. and DFG (BI 1409/2-1) to J.B.

Author information

Authors and Affiliations

Authors

Contributions

M.H., J.B., R.P.F., A.B., F.S., D.K. and M.R.S. performed aggregation experiments; T.W. provided chemistry expertise; J.M.L. and B.R. performed NMR experiments; B.A.G. and S.G. performed computational docking studies; Q.W., R.A. and D.M.W. contributed LTP experiments; R.L. helped with EM; M.F. contributed a conformation-specific antibody; R.F.F. produced peptide arrays; S.S., J.B. and E.E.W. edited the manuscript; E.E.W. designed the study and wrote the manuscript.

Corresponding author

Correspondence to Erich E Wanker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1118 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieschke, J., Herbst, M., Wiglenda, T. et al. Small-molecule conversion of toxic oligomers to nontoxic β-sheet–rich amyloid fibrils. Nat Chem Biol 8, 93–101 (2012). https://doi.org/10.1038/nchembio.719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.719

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing