Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site

A Corrigendum to this article was published on 18 July 2012

This article has been updated

Abstract

Since 1992, there has been growing evidence that the bioactive phospholipid lysophosphatidic acid (LPA), whose amounts are increased upon tissue injury, activates primary nociceptors resulting in neuropathic pain. The TRPV1 ion channel is expressed in primary afferent nociceptors and is activated by physical and chemical stimuli. Here we show that in control mice LPA produces acute pain-like behaviors, which are substantially reduced in Trpv1-null animals. Our data also demonstrate that LPA activates TRPV1 through a unique mechanism that is independent of G protein–coupled receptors, contrary to what has been widely shown for other ion channels, by directly interacting with the C terminus of the channel. We conclude that TRPV1 is a direct molecular target of the pain-producing molecule LPA and that this constitutes, to our knowledge, the first example of LPA binding directly to an ion channel to acutely regulate its function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRPV1 responds to LPA.
Figure 2: Heterologously expressed TRPV1 channels respond to LPA.
Figure 3: An antagonist of LPA receptors with a similar structure to LPA activates TRPV1.
Figure 4: Interaction site for LPA in the C terminus of TRPV1.

Similar content being viewed by others

Change history

  • 15 June 2012

    In the version of this article initially published, the amount of LPA used in behavioral assays was incorrectly stated in the Methods section as 3 μg when it should have read 4.1 μg. Also, the details of preparation of LPA stock solutions were incomplete in the Methods section. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Inoue, M. et al. Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat. Med. 10, 712–718 (2004).

    Article  CAS  Google Scholar 

  2. Okudaira, S., Yukiura, H. & Aoki, J. Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie 92, 698–706 (2010).

    Article  CAS  Google Scholar 

  3. Lin, M.E., Herr, D.R. & Chun, J. Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat. 91, 130–138 (2010).

    Article  CAS  Google Scholar 

  4. Ma, L., Nagai, J. & Ueda, H. Microglial activation mediates de novo lysophosphatidic acid production in a model of neuropathic pain. J. Neurochem. 115, 643–653 (2010).

    Article  CAS  Google Scholar 

  5. Chun, J., Hla, T., Lynch, K.R., Spiegel, S. & Moolenaar, W.H. International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol. Rev. 62, 579–587 (2010).

    Article  CAS  Google Scholar 

  6. Roedding, A.S., Li, P.P. & Warsh, J.J. Characterization of the transient receptor potential channels mediating lysophosphatidic acid-stimulated calcium mobilization in B lymphoblasts. Life Sci. 80, 89–97 (2006).

    Article  CAS  Google Scholar 

  7. Runnels, L.W., Yue, L. & Clapham, D.E. The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat. Cell Biol. 4, 329–336 (2002).

    Article  CAS  Google Scholar 

  8. Jara-Oseguera, A., Simon, S.A. & Rosenbaum, T. TRPV1: on the road to pain relief. Curr. Mol. Pharmacol. 1, 255–269 (2008).

    Article  CAS  Google Scholar 

  9. Yao, J., Liu, B. & Qin, F. Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc. Natl. Acad. Sci. USA 108, 11109–11114 (2011).

    Article  CAS  Google Scholar 

  10. Pan, H.L., Zhang, Y.Q. & Zhao, Z.Q. Involvement of lysophosphatidic acid in bone cancer pain by potentiation of TRPV1 via PKCɛ pathway in dorsal root ganglion neurons. Mol. Pain 6, 85 (2010).

    Article  CAS  Google Scholar 

  11. Brauchi, S. et al. Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc. Natl. Acad. Sci. USA 104, 10246–10251 (2007).

    Article  CAS  Google Scholar 

  12. Stein, A.T., Ufret-Vincenty, C.A., Hua, L., Santana, L.F. & Gordon, S.E. Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J. Gen. Physiol. 128, 509–522 (2006).

    Article  CAS  Google Scholar 

  13. Ufret-Vincenty, C.A., Klein, R.M., Hua, L., Angueyra, J. & Gordon, S.E. Localization of the PIP2 sensor of TRPV1 ion channels. J. Biol. Chem. 286, 9688–9698 (2011).

    Article  CAS  Google Scholar 

  14. Escalante-Alcalde, D., Sanchez-Sanchez, R. & Stewart, C.L. Generation of a conditional Ppap2b/Lpp3 null allele. Genesis 45, 465–469 (2007).

    Article  CAS  Google Scholar 

  15. Caterina, M.J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    Article  CAS  Google Scholar 

  16. Jiang, G. et al. α-substituted phosphonate analogues of lysophosphatidic acid (LPA) selectively inhibit production and action of LPA. ChemMedChem 2, 679–690 (2007).

    Article  CAS  Google Scholar 

  17. Oh, D.Y. et al. Identification of farnesyl pyrophosphate and N-arachidonylglycine as endogenous ligands for GPR92. J. Biol. Chem. 283, 21054–21064 (2008).

    Article  CAS  Google Scholar 

  18. Alderton, F., Sambi, B., Tate, R., Pyne, N.J. & Pyne, S. Assessment of agonism at G-protein coupled receptors by phosphatidic acid and lysophosphatidic acid in human embryonic kidney 293 cells. Br. J. Pharmacol. 134, 6–9 (2001).

    Article  CAS  Google Scholar 

  19. Zhang, H. et al. Dual activity lysophosphatidic acid receptor pan-antagonist/autotaxin inhibitor reduces breast cancer cell migration in vitro and causes tumor regression in vivo. Cancer Res. 69, 5441–5449 (2009).

    Article  CAS  Google Scholar 

  20. Bang, S., Yoo, S., Yang, T.J., Cho, H. & Hwang, S.W. Farnesyl pyrophosphate is a novel pain-producing molecule via specific activation of TRPV3. J. Biol. Chem. 285, 19362–19371 (2010).

    Article  CAS  Google Scholar 

  21. Cohen, A., Sagron, R., Somech, E., Segal-Hayoun, Y. & Zilberberg, N. Pain-associated signals, acidosis and lysophosphatidic acid, modulate the neuronal K(2P)2.1 channel. Mol. Cell. Neurosci. 40, 382–389 (2009).

    Article  CAS  Google Scholar 

  22. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).

    Article  CAS  Google Scholar 

  23. Bourinet, E., Soong, T.W., Stea, A. & Snutch, T.P. Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc. Natl. Acad. Sci. USA 93, 1486–1491 (1996).

    Article  CAS  Google Scholar 

  24. Koch, W.J., Hawes, B.E., Inglese, J., Luttrell, L.M. & Lefkowitz, R.J. Cellular expression of the carboxyl terminus of a G protein-coupled receptor kinase attenuates Gβγ-mediated signaling. J. Biol. Chem. 269, 6193–6197 (1994).

    CAS  PubMed  Google Scholar 

  25. Chaytor, A.T., Edwards, D.H., Bakker, L.M. & Griffith, T.M. Distinct hyperpolarizing and relaxant roles for gap junctions and endothelium-derived H2O2 in NO-independent relaxations of rabbit arteries. Proc. Natl. Acad. Sci. USA 100, 15212–15217 (2003).

    Article  CAS  Google Scholar 

  26. Tang, L. et al. Antinociceptive pharmacology of N-(4-chlorobenzyl)-N′-(4-hydroxy-3-iodo-5-methoxybenzyl) thiourea, a high-affinity competitive antagonist of the transient receptor potential vanilloid 1 receptor. J. Pharmacol. Exp. Ther. 321, 791–798 (2007).

    Article  CAS  Google Scholar 

  27. Cenni, V. et al. Regulation of novel protein kinase C ɛ by phosphorylation. Biochem. J. 363, 537–545 (2002).

    Article  CAS  Google Scholar 

  28. Mintzer, E., Sargsyan, H. & Bittman, R. Lysophosphatidic acid and lipopolysaccharide bind to the PIP2-binding domain of gelsolin. Biochim. Biophys. Acta 1758, 85–89 (2006).

    Article  CAS  Google Scholar 

  29. Kumar, N., Zhao, P., Tomar, A., Galea, C.A. & Khurana, S. Association of villin with phosphatidylinositol 4,5-bisphosphate regulates the actin cytoskeleton. J. Biol. Chem. 279, 3096–3110 (2004).

    Article  CAS  Google Scholar 

  30. Klein, R.M., Ufret-Vincenty, C., Hua, L. & Gordon, S. Determinants of molecular specificity in phosphoinositide regulation. J. Biol. Chem. 283, 26208–26216 (2008).

    Article  CAS  Google Scholar 

  31. Yao, J. & Qin, F. Interaction with phosphoinositides confers adaptation onto the TRPV1 pain receptor. PLoS Biol. 7, e46 (2009).

    Article  Google Scholar 

  32. Prescott, E.D. & Julius, D. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300, 1284–1288 (2003).

    Article  CAS  Google Scholar 

  33. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998).

    Article  CAS  Google Scholar 

  34. Inoue, M. et al. Lysophosphatidylcholine induces neuropathic pain through an action of autotaxin to generate lysophosphatidic acid. Neuroscience 152, 296–298 (2008).

    Article  CAS  Google Scholar 

  35. Ueda, H. Peripheral mechanisms of neuropathic pain—involvement of lysophosphatidic acid receptor-mediated demyelination. Mol. Pain 4, 11 (2008).

    Article  Google Scholar 

  36. Chemin, J. et al. Lysophosphatidic acid-operated K+ channels. J. Biol. Chem. 280, 4415–4421 (2005).

    Article  CAS  Google Scholar 

  37. Kelly, J.J. Jr., Kyle, R.A., Miles, J.M. & Dyck, P.J. Osteosclerotic myeloma and peripheral neuropathy. Neurology 33, 202–210 (1983).

    Article  Google Scholar 

  38. Schwei, M.J. et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J. Neurosci. 19, 10886–10897 (1999).

    Article  CAS  Google Scholar 

  39. Marincsák, R. et al. Increased expression of TRPV1 in squamous cell carcinoma of the human tongue. Oral Dis. 15, 328–335 (2009).

    Article  Google Scholar 

  40. Renbäck, K., Inoue, M., Yoshida, A., Nyberg, F. & Ueda, H. Vzg-1/lysophosphatidic acid-receptor involved in peripheral pain transmission. Brain Res. Mol. Brain Res. 75, 350–354 (2000).

    Article  Google Scholar 

  41. García-Sanz, N. et al. A role of the transient receptor potential domain of vanilloid receptor I in channel gating. J. Neurosci. 27, 11641–11650 (2007).

    Article  Google Scholar 

  42. McIntyre, T.M. et al. Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARγ agonist. Proc. Natl. Acad. Sci. USA 100, 131–136 (2003).

    Article  CAS  Google Scholar 

  43. Hama, K., Bandoh, K., Kakehi, Y., Aoki, J. & Arai, H. Lysophosphatidic acid (LPA) receptors are activated differentially by biological fluids: possible role of LPA-binding proteins in activation of LPA receptors. FEBS Lett. 523, 187–192 (2002).

    Article  CAS  Google Scholar 

  44. Salazar, H. et al. A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nat. Neurosci. 11, 255–261 (2008).

    Article  CAS  Google Scholar 

  45. Nishimasu, H. et al. Crystal structure of autotaxin and insight into GPCR activation by lipid mediators. Nat. Struct. Mol. Biol. 18, 205–212 (2011).

    Article  CAS  Google Scholar 

  46. Hausmann, J. et al. Structural basis of substrate discrimination and integrin binding by autotaxin. Nat. Struct. Mol. Biol. 18, 198–204 (2011).

    Article  CAS  Google Scholar 

  47. Karliner, J.S. Lysophospholipids and the cardiovascular system. Biochim. Biophys. Acta 1582, 216–221 (2002).

    Article  CAS  Google Scholar 

  48. Sams, H.H., Dunnick, C.A., Smith, M.L. & King, L.E. Jr. Necrotic arachnidism. J. Am. Acad. Dermatol. 44, 561–573 (2001).

    Article  CAS  Google Scholar 

  49. Caccin, P., Rigoni, M., Bisceglie, A., Rossetto, O. & Montecucco, C. Reversible skeletal neuromuscular paralysis induced by different lysophospholipids. FEBS Lett. 580, 6317–6321 (2006).

    Article  CAS  Google Scholar 

  50. Rosenbaum, T. & Gordon, S.E. Dissecting intersubunit contacts in cyclic nucleotide-gated ion channels. Neuron 33, 703–713 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Julius at University of California, San Francisco for providing the TRPV1 and TRPV2 cDNA, A. Patapoutian at the Scripps Research Institute for the TRPA1 cDNA, A. Toker at Harvard Medical School for PKCɛ dominant-negative and wild-type plasmids, J.A. García-Sáinz for his kind gift of BIM I and M. Calcagno for helpful discussion. We also thank L. Ongay, A. Escalante and F. Pérez at Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM) for expert technical support and F. Sierra for expert help with DRG neuron culture. We are grateful to C.C. Durán and V.G. Soto for very valuable help with paw-withdrawal experiments. This work was supported by Dirección General de Asuntos del Personal Académico–Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (DGAPA-PAPIIT) grant IN209209 and Instituto de Ciencia y Tecnología del Distrito Federal (ICYT-DF) grant PIFUTP09-262 to L.D.I., PAPIIT grants IN216009 and CONACyT 53777 to D.E.-A., and PAPIIT grants IN294111-3 and CONACyT CB-129474 and a grant from Fundación Miguel Alemán to T.R. This study was performed in partial fulfillment of the requirements for A.N.-P.'s doctoral degree in biomedical sciences at the UNAM.

Author information

Authors and Affiliations

Authors

Contributions

A.N.-P., G.P.-J. and A.J.-O. performed electrophysiological experiments. I.L. carried out all site-directed mutagenesis. S.M.-L. performed all animal matings, genotyping and biochemical assays. D.E.-A., L.D.I. and T.R. jointly conceived the study, performed recordings and analysis, and wrote the paper.

Corresponding authors

Correspondence to Diana Escalante-Alcalde, León D Islas or Tamara Rosenbaum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 700 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieto-Posadas, A., Picazo-Juárez, G., Llorente, I. et al. Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site. Nat Chem Biol 8, 78–85 (2012). https://doi.org/10.1038/nchembio.712

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing