Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum

Abstract

Newly replicated Plasmodium falciparum parasites escape from host erythrocytes through a tightly regulated process that is mediated by multiple classes of proteolytic enzymes. However, the identification of specific proteases has been challenging. We describe here a forward chemical genetic screen using a highly focused library of more than 1,200 covalent serine and cysteine protease inhibitors to identify compounds that block host cell rupture by P. falciparum. Using hits from the library screen, we identified the subtilisin-family serine protease PfSU B1 and the cysteine protease dipeptidyl peptidase 3 (DPAP3) as primary regulators of this process. Inhibition of both DPAP3 and PfSUB1 caused a block in proteolytic processing of the serine repeat antigen (SERA) protein SERA5 that correlated with the observed block in rupture. Furthermore, DPAP3 inhibition reduced the levels of mature PfSUB1. These results suggest that two mechanistically distinct proteases function to regulate processing of downstream substrates required for efficient release of parasites from host red blood cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assembly and screening of the protease inhibitor library.
Figure 2: Identification of PfSUB1 as the target of JCP104.
Figure 3: Inhibition of PfSUB1 correlates with a block in rupture.
Figure 4: Identification of DPAP1 and DPAP3 as targets of JCP405 and JCP410.
Figure 5: Design of selective DPAP3 and DPAP1 inhibitors.
Figure 6: PfSUB1 and DPAP3 mediate SERA5 processing.
Figure 7: The protease pathway involved in schizont rupture.

Similar content being viewed by others

References

  1. Carruthers, V.B. & Blackman, M.J. A new release on life: emerging concepts in proteolysis and parasite invasion. Mol. Microbiol. 55, 1617–1630 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. O'Donnell, R.A. & Blackman, M.J. The role of malaria merozoite proteases in red blood cell invasion. Curr. Opin. Microbiol. 8, 422–427 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Rosenthal, P.J. Cysteine proteases of malaria parasites. Int. J. Parasitol. 34, 1489–1499 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Wickham, M.E., Culvenor, J.G. & Cowman, A.F. Selective inhibition of a two-step egress of malaria parasites from the host erythrocyte. J. Biol. Chem. 278, 37658–37663 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Harris, P.K. et al. Molecular identification of a malaria merozoite surface sheddase. PLoS Pathog. 1, 241–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Green, J.L., Hinds, L., Grainger, M., Knuepfer, E. & Holder, A.A. Plasmodium thrombospondin related apical merozoite protein (PTRAMP) is shed from the surface of merozoites by PfSUB2 upon invasion of erythrocytes. Mol. Biochem. Parasitol. 150, 114–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Li, J., Mitamura, T., Fox, B.A., Bzik, D.J. & Horii, T. Differential localization of processed fragments of Plasmodium falciparum serine repeat antigen and further processing of its N-terminal 47 kDa fragment. Parasitol. Int. 51, 343–352 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Howell, S.A. et al. Distinct mechanisms govern proteolytic shedding of a key invasion protein in apicomplexan pathogens. Mol. Microbiol. 57, 1342–1356 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Aly, A.S. & Matuschewski, K. A malarial cysteine protease is necessary for Plasmodium sporozoite egress from oocysts. J. Exp. Med. 202, 225–230 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miller, S.K. et al. A subset of Plasmodium falciparum SERA genes are expressed and appear to play an important role in the erythrocytic cycle. J. Biol. Chem. 277, 47524–47532 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Li, J., Matsuoka, H., Mitamura, T. & Horii, T. Characterization of proteases involved in the processing of Plasmodium falciparum serine repeat antigen (SERA). Mol. Biochem. Parasitol. 120, 177–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Aoki, S. et al. Serine repeat antigen (SERA5) is predominantly expressed among the SERA multigene family of Plasmodium falciparum, and the acquired antibody titers correlate with serum inhibition of the parasite growth. J. Biol. Chem. 277, 47533–47540 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Pang, X.L., Mitamura, T. & Horii, T. Antibodies reactive with the N-terminal domain of Plasmodium falciparum serine repeat antigen inhibit cell proliferation by agglutinating merozoites and schizonts. Infect. Immun. 67, 1821–1827 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Blackman, M.J. Purification of Plasmodium falciparum merozoites for analysis of the processing of merozoite surface protein-1. Methods Cell Biol. 45, 213–220 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Contreras, C.E. et al. Stage-specific activity of potential antimalarial compounds measured in vitro by flow cytometry in comparison to optical microscopy and hypoxanthine uptake. Mem. Inst. Oswaldo Cruz 99, 179–184 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Powers, J.C., Asgian, J.L., Ekici, O.D. & James, K.E. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102, 4639–4750 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Jackson, K.E. et al. Selective permeabilization of the host cell membrane of Plasmodium falciparum-infected red blood cells with streptolysin O and equinatoxin II. Biochem. J. 403, 167–175 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saliba, K.J. & Kirk, K. Nutrient acquisition by intracellular apicomplexan parasites: staying in for dinner. Int. J. Parasitol. 31, 1321–1330 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Nyalwidhe, J. et al. A nonpermeant biotin derivative gains access to the parasitophorous vacuole in Plasmodium falciparum-infected erythrocytes permeabilized with streptolysin O. J. Biol. Chem. 277, 40005–40011 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Sajid, M., Withers-Martinez, C. & Blackman, M.J. Maturation and specificity of Plasmodium falciparum subtilisin-like protease-1, a malaria merozoite subtilisin-like serine protease. J. Biol. Chem. 275, 631–641 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Jean, L., Withers-Martinez, C., Hackett, F. & Blackman, M.J. Unique insertions within Plasmodium falciparum subtilisin-like protease-1 are crucial for enzyme maturation and activity. Mol. Biochem. Parasitol. 144, 187–197 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Blackman, M.J. et al. A subtilisin-like protein in secretory organelles of Plasmodium falciparum merozoites. J. Biol. Chem. 273, 23398–23409 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Yeoh, S. et al. Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 131, 1072–1083 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Shenai, B.R., Sijwali, P.S., Singh, A. & Rosenthal, P.J. Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J. Biol. Chem. 275, 29000–29010 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Sijwali, P.S., Shenai, B.R., Gut, J., Singh, A. & Rosenthal, P.J. Expression and characterization of the Plasmodium falciparum haemoglobinase falcipain-3. Biochem. J. 360, 481–489 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sijwali, P.S. & Rosenthal, P.J. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 101, 4384–4389 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Sijwali, P.S., Koo, J., Singh, N. & Rosenthal, P.J. Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum. Mol. Biochem. Parasitol. 150, 96–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Kam, C.M. et al. Design and evaluation of inhibitors for dipeptidyl peptidase I (Cathepsin C). Arch. Biochem. Biophys. 427, 123–134 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Klemba, M., Gluzman, I. & Goldberg, D.E. A Plasmodium falciparum dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation. J. Biol. Chem. 279, 43000–43007 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Yuan, F., Verhelst, S.H., Blum, G., Coussens, L.M. & Bogyo, M. A selective activity-based probe for the papain family cysteine protease dipeptidyl peptidase I/cathepsin C. J. Am. Chem. Soc. 128, 5616–5617 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Greenbaum, D.C. et al. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science 298, 2002–2006 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, G., Mahesh, U., Chen, G.Y. & Yao, S.Q. Solid-phase synthesis of peptide vinyl sulfones as potential inhibitors and activity-based probes of cysteine proteases. Org. Lett. 5, 737–740 (2003).

    Article  PubMed  Google Scholar 

  33. Delplace, P., Fortier, B., Tronchin, G., Dubremetz, J.F. & Vernes, A. Localization, biosynthesis, processing and isolation of a major 126 kDa antigen of the parasitophorous vacuole of Plasmodium falciparum. Mol. Biochem. Parasitol. 23, 193–201 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Delplace, P. et al. Protein p126: a parasitophorous vacuole antigen associated with the release of Plasmodium falciparum merozoites. Biol. Cell 64, 215–221 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Tallarida, R.J. Drug synergism: its detection and applications. J. Pharmacol. Exp. Ther. 298, 865–872 (2001).

    CAS  PubMed  Google Scholar 

  36. Withers-Martinez, C. et al. Expression of recombinant Plasmodium falciparum subtilisin-like protease-1 in insect cells. Characterization, comparison with the parasite protease, and homology modeling. J. Biol. Chem. 277, 29698–29709 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Henningsson, F., Wolters, P., Chapman, H.A., Caughey, G.H. & Pejler, G. Mast cell cathepsins C and S control levels of carboxypeptidase A and the chymase, mouse mast cell protease 5. Biol. Chem. 384, 1527–1531 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Hodder, A.N. et al. Enzymic, phylogenetic, and structural characterization of the unusual papain-like protease domain of Plasmodium falciparum SERA5. J. Biol. Chem. 278, 48169–48177 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Hackett, F., Sajid, M., Withers-Martinez, C., Grainger, M. & Blackman, M.J. PfSUB-2: a second subtilisin-like protein in Plasmodium falciparum merozoites. Mol. Biochem. Parasitol. 103, 183–195 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Palmer, J.T., Rasnick, D., Klaus, J.L. & Bromme, D. Vinyl sulfones as mechanism-based cysteine protease inhibitors. J. Med. Chem. 38, 3193–3196 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Delplace, P., Dubremetz, J.F., Fortier, B. & Vernes, A. A 50 kilodalton exoantigen specific to the merozoite release-reinvasion stage of Plasmodium falciparum. Mol. Biochem. Parasitol. 17, 239–251 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Blackman (UK National Institute for Medical Research) for sharing his data on SERA5 processing before its publication and for providing reagents for PfSUB1. We also thank M. Klemba (Virginia Tech) for valuable information about the DPAPs and the DPAP1-specific antibodies. We thank J. Powers (University of Georgia) and W. Roush (The Scripps Research Institute) for the directed irreversible inhibitors of serine and cysteine proteases. We thank J.-F. Dubremetz (Université de Montpellier 2) for providing the SERA5-specific antibody. We thank C. Yang for generating compound toxicity data, S. Verhelst for analysis of NMR data and A. Guzzetta for high-resolution mass spectrometry analysis of compounds. This work was supported by funding from the Kinship Foundation as part of the Searle Scholars program (to M.B.), from a Burroughs Wellcome Trust New Investigators in Pathogenesis Award (to M.B.) and by the US National Institutes of Health National Technology Center for Networks and Pathways grants U54 RR020843 and R01 EB005011 (to M.B.). S.A.K. is supported by the US National Institutes of Health Research Fellowship Award F32 AI069728-01A1. E.L.P. is supported by the US National Science Foundation Graduate Research Fellowship 2005021299. C.I.P. is supported by an American Society for Microbiology Watkins Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Bogyo.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 2372 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arastu-Kapur, S., Ponder, E., Fonović, U. et al. Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat Chem Biol 4, 203–213 (2008). https://doi.org/10.1038/nchembio.70

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.70

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing