Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

α-ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition

Abstract

Microbes survive in a variety of nutrient environments by modulating their intracellular metabolism. Balanced growth requires coordinated uptake of carbon and nitrogen, the primary substrates for biomass production. Yet the mechanisms that balance carbon and nitrogen uptake are poorly understood. We find in Escherichia coli that a sudden increase in nitrogen availability results in an almost immediate increase in glucose uptake. The concentrations of glycolytic intermediates and known regulators, however, remain homeostatic. Instead, we find that α-ketoglutarate, which accumulates in nitrogen limitation, directly blocks glucose uptake by inhibiting enzyme I, the first step of the sugar–phosphoenolpyruvate phosphotransferase system (PTS). This inhibition enables rapid modulation of glycolytic flux without marked changes in the concentrations of glycolytic intermediates by simultaneously altering import of glucose and consumption of the terminal glycolytic intermediate phosphoenolpyruvate. Quantitative modeling shows that this previously unidentified regulatory connection is, in principle, sufficient to coordinate carbon and nitrogen utilization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glycolytic intermediates are homeostatic during nitrogen upshift.
Figure 2: Glucose uptake increases rapidly upon nitrogen upshift, independent of glutamine concentration.
Figure 3: α-ketoglutarate inhibits enzyme I in vitro.
Figure 4: Simulated pool size changes in response to varying nitrogen availability.

Similar content being viewed by others

References

  1. Guertin, D.A. & Sabatini, D.M. Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Kapahi, P. et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 11, 453–465 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Monot, F. & Engasser, J.M. Production of acetone and butanol by batch and continuous culture of Clostridium acetobutylicum under nitrogen limitation. Biotechnol. Lett. 5, 213–218 (1983).

    Article  CAS  Google Scholar 

  4. Kessler, B., Weusthuis, R., Witholt, B. & Eggink, G. Production of microbial polyesters: fermentation and downstream processes. Adv. Biochem. Eng. Biotechnol. 71, 159–182 (2001).

    CAS  PubMed  Google Scholar 

  5. Aoyama, K., Uemura, I., Miyake, J. & Asada, Y. Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. J. Ferment. Bioeng. 83, 17–20 (1997).

    Article  CAS  Google Scholar 

  6. Kumazawa, S. & Mitsui, A. Characterization and optimization of hydrogen photoproduction by a saltwater blue-green alga, Oscillatoria sp. Miami BG7. I. Enhancement through limiting the supply of nitrogen nutrients. Int. J. Hydrogen Energy 6, 339–348 (1981).

    Article  CAS  Google Scholar 

  7. Troshina, O., Serebryakova, L., Sheremetieva, M. & Lindblad, P. Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int. J. Hydrogen Energy 27, 1283–1289 (2002).

    Article  CAS  Google Scholar 

  8. Commichau, F.M., Forchhammer, K. & Stulke, J. Regulatory links between carbon and nitrogen metabolism. Curr. Opin. Microbiol. 9, 167–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Wacker, I. et al. The regulatory link between carbon and nitrogen metabolism in Bacillus subtilis: regulation of the gltAB operon by the catabolite control protein CcpA. Microbiology 149, 3001–3009 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Jiang, P. & Ninfa, A.J. Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylate energy charge in vitro. Biochemistry 46, 12979–12996 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Ninfa, A.J. & Jiang, P. PII signal transduction proteins: sensors of alpha-ketoglutarate that regulate nitrogen metabolism. Curr. Opin. Microbiol. 8, 168–173 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Yuan, J. et al. Metabolomics-driven quantitative analysis of ammonia assimilation in E. coli. Mol. Syst. Biol. 5, 302 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bennett, B.D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yan, D. Protection of the glutamate pool concentration in enteric bacteria. Proc. Natl. Acad. Sci. USA 104, 9475–9480 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seol, W. & Shatkin, A.J. Escherichia coli alpha-ketoglutarate permease is a constitutively expressed proton symporter. J. Biol. Chem. 267, 6409–6413 (1992).

    CAS  PubMed  Google Scholar 

  16. Meadow, N.D., Fox, D.K. & Roseman, S. The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu. Rev. Biochem. 59, 497–542 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Chulavatnatol, M. & Atkinson, D.E. Phosphoenolpyruvate synthetase from Escherichia coli. J. Biol. Chem. 248, 2712–2715 (1973).

    CAS  PubMed  Google Scholar 

  18. Teplyakov, A. et al. Structure of phosphorylated enzyme I, the phosphoenolpyruvate:sugar phosphotransferase system sugar translocation signal protein. Proc. Natl. Acad. Sci. USA 103, 16218–16223 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bettenbrock, K. et al. Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. J. Bacteriol. 189, 6891–6900 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amin, N. & Peterkofsky, A. Requirement for GLY-60 of Escherichia coli adenylyl cyclase for ATP binding and catalytic activity. Biochem. Biophys. Res. Commun. 182, 1218–1225 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Daniel, J. & Danchin, A. 2-Ketoglutarate as a possible regulatory metabolite involved in cyclic AMP-dependent catabolite repression in Escherichia coli K12. Biochimie 68, 303–310 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Pereira, D.S., Donald, L.J., Hosfield, D.J. & Duckworth, H.W. Active site mutants of Escherichia coli citrate synthase. Effects of mutations on catalytic and allosteric properties. J. Biol. Chem. 269, 412–417 (1994).

    CAS  PubMed  Google Scholar 

  23. Goyal, S., Yuan, J., Chen, T., Rabinowitz, J.D. & Wingreen, N.S. Achieving optimal growth through product feedback inhibition in metabolism. PLoS Comput. Biol. 6, e1000802 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ikeda, T.P., Shauger, A.E. & Kustu, S. Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation. J. Mol. Biol. 259, 589–607 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Boer, V.M., Crutchfield, C.A., Bradley, P.H., Botstein, D. & Rabinowitz, J.D. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations. Mol. Biol. Cell 21, 198–211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brauer, M.J. et al. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol. Biol. Cell 19, 352–367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blangy, D., Buc, H. & Monod, J. Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. J. Mol. Biol. 31, 13–35 (1968).

    Article  CAS  PubMed  Google Scholar 

  28. Zhao, G. & Winkler, M.E. A novel alpha-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J. Bacteriol. 178, 232–239 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rabus, R., Reizer, J., Paulsen, I. & Saier, M.H. Enzyme INtr from Escherichia coli. J. Biol. Chem. 274, 26185–26191 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Rohwer, J.M., Meadow, N.D., Roseman, S., Westerhoff, H.V. & Postma, P.W. Understanding glucose transport by the bacterial phosphoenolpyruvate:glycose phosphotransferase system on the basis of kinetic measurements in vitro. J. Biol. Chem. 275, 34909–34921 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Nishio, Y., Usuda, Y., Matsui, K. & Kurata, H. Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli. Mol. Syst. Biol. 4, 160 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Soupene, E. et al. Physiological studies of Escherichia coli strain MG1655: growth defects and apparent cross-regulation of gene expression. J. Bacteriol. 185, 5611–5626 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. De Anda, R. et al. Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab. Eng. 8, 281–290 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Gutnick, D., Calvo, J.M., Klopotowski, T. & Ames, B.N. Compounds which serve as the sole source of carbon or nitrogen for Salmonella typhimurium LT-2. J. Bacteriol. 100, 215–219 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, P.S. & Otting, G. Rapid pulse length determination in high-resolution NMR. J. Magn. Reson. 176, 115–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Hwang, T.L. & Shaka, A.J. Water suppression that works. excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J. Magn. Reson. 112, 275–279 (1995).

    Article  CAS  Google Scholar 

  39. Lu, W., Kwon, Y.K. & Rabinowitz, J.D. Isotope ratio-based profiling of microbial folates. J. Am. Soc. Mass Spectrom. 18, 898–909 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kitagawa, M. et al. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 12, 291–299 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Hoving, H., Lolkema, J.S. & Robillard, G.T. Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: equilibrium kinetics and mechanism of Enzyme I phosphorylation. Biochemistry 20, 87–93 (1981).

    Article  CAS  PubMed  Google Scholar 

  42. Lu, W., Bennett, B.D. & Rabinowitz, J.D. Analytical strategies for LC-MS-based targeted metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 871, 236–242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Yuan, whose experiments laid the groundwork for the current study; D. Yan for providing the GOGAT strain; and G. Gosset for providing the W3110 and VH33 strains. This research was funded by US National Science Foundation CAREER award MCB-0643859, joint Department of Energy–Air Force Office of Scientific Research Award DOE DE-SC0002077–AFOSR FA9550-09-1-0580, and the US National Institutes of Health Center for Quantitative Biology Award P50 GM071508.

Author information

Authors and Affiliations

Authors

Contributions

C.D.D. designed and performed experiments, designed the model and wrote the paper; D.J.S. designed the model and performed the model analysis; N.S.W. designed the model; J.D.R. designed experiments, designed the model and wrote the paper.

Corresponding author

Correspondence to Joshua D Rabinowitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 3609 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doucette, C., Schwab, D., Wingreen, N. et al. α-ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat Chem Biol 7, 894–901 (2011). https://doi.org/10.1038/nchembio.685

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.685

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research