Abstract
Peptide natural products show broad biological properties and are commonly produced by orthogonal ribosomal and nonribosomal pathways in prokaryotes and eukaryotes. To harvest this large and diverse resource of bioactive molecules, we introduce here natural product peptidogenomics (NPP), a new MS–guided genome-mining method that connects the chemotypes of peptide natural products to their biosynthetic gene clusters by iteratively matching de novo tandem MS (MSn) structures to genomics-based structures following biosynthetic logic. In this study, we show that NPP enabled the rapid characterization of over ten chemically diverse ribosomal and nonribosomal peptide natural products of previously unidentified composition from Streptomycete bacteria as a proof of concept to begin automating the genome-mining process. We show the identification of lantipeptides, lasso peptides, linardins, formylated peptides and lipopeptides, many of which are from well-characterized model Streptomycetes, highlighting the power of NPP in the discovery of new peptide natural products from even intensely studied organisms.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Bioprospecting the microbiome of Red Sea Atlantis II brine pool for peptidases and biosynthetic genes with promising antibacterial activity
Microbial Cell Factories Open Access 02 June 2022
-
Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery
Nature Communications Open Access 28 May 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Daffre, S. et al. Bioactive natural peptides. in Studies in Natural Products Chemistry, 1st edn., Vol. 35 (ed. Rahman, A.U.) 597–691 (Elsevier, 2008).
Nolan, E.M. & Walsh, C.T. How nature morphs peptide scaffolds into antibiotics. ChemBioChem 10, 34–53 (2009).
Donadio, S., Monciardini, P. & Sosio, M. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat. Prod. Rep. 24, 1073–1109 (2007).
Velásquez, J.E. & van der Donk, W.A. Genome mining for ribosomally synthesized natural products. Curr. Opin. Chem. Biol. 15, 11–21 (2011).
Ganz, T. Defensins and host defense. Science 286, 420–421 (1999).
Moore, B.S. Extending the biosynthetic repertoire in ribosomal peptide assembly. Angew. Chem. Int. Edn Engl. 47, 9386–9388 (2008).
Willey, J.M. & van der Donk, W.A. Lantibiotics: peptides of diverse structure and function. Annu. Rev. Microbiol. 61, 477–501 (2007).
Li, C. & Kelly, W.L. Recent advances in thiopeptide antibiotic biosynthesis. Nat. Prod. Rep. 27, 153–164 (2010).
Donia, M.S., Ravel, J. & Schmidt, E.W. A global assembly line for cyanobactins. Nat. Chem. Biol. 4, 341–343 (2008).
Duquesne, S. et al. Two enzymes catalyze the maturation of a lasso peptide in Escherichia coli. Chem. Biol. 14, 793–803 (2007).
Duquesne, S., Petit, V., Peduzzi, J. & Rebuffat, S. Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria. J. Mol. Microbiol. Biotechnol. 13, 200–209 (2007).
Cotter, P.D., Hill, C. & Ross, R.P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3, 777–788 (2005).
Oman, T.J. & van der Donk, W.A. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat. Chem. Biol. 6, 9–18 (2010).
Challis, G.L., Ravel, J. & Townsend, C.A. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 7, 211–224 (2000).
Finn, R.D. et al. The Pfam protein families database. Nucleic Acids Res. 36, D281–D288 (2008).
Winter, J.M., Behnken, S. & Hertweck, C. Genomics-inspired discovery of natural products. Curr. Opin. Chem. Biol. 15, 22–31 (2011).
Lautru, S., Deeth, R.J., Bailey, L.M. & Challis, G.L. Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat. Chem. Biol. 1, 265–269 (2005).
Claesen, J. & Bibb, M. Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc. Natl. Acad. Sci. USA 107, 16297–16302 (2010).
Li, B. et al. Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proc. Natl. Acad. Sci. USA 107, 10430–10435 (2010).
Kodani, S. et al. The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc. Natl. Acad. Sci. USA 101, 11448–11453 (2004).
Gressler, M., Zaehle, C., Scherlach, K., Hertweck, C. & Brock, M. Multifactorial induction of an orphan PKS-NRPS gene cluster in Aspergillus terreus. Chem. Biol. 18, 198–209 (2011).
Ng, J. et al. Dereplication and de novo sequencing of nonribosomal peptides. Nat. Methods 6, 596–599 (2009).
Tsur, D., Tanner, S., Zandi, E., Bafna, V. & Pevzner, P.A. Identification of post-translational modifications by blind search of mass spectra. Nat. Biotechnol. 23, 1562–1567 (2005).
Duncan, M.W., Aebersold, R. & Caprioli, R.M. The pros and cons of peptide-centric proteomics. Nat. Biotechnol. 28, 659–664 (2010).
Yang, Y.L., Xu, Y., Straight, P. & Dorrestein, P.C. Translating metabolic exchange with imaging mass spectrometry. Nat. Chem. Biol. 5, 885–887 (2009).
Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).
Ueda, K. et al. AmfS, an extracellular peptidic morphogen in Streptomyces griseus. J. Bacteriol. 184, 1488–1492 (2002).
McIntosh, J.A., Donia, M.S. & Schmidt, E.W. Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat. Prod. Rep. 26, 537–559 (2009).
Ohnishi, Y. et al. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190, 4050–4060 (2008).
Willey, J.M., Willems, A., Kodani, S. & Nodwell, J.R. Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol. Microbiol. 59, 731–742 (2006).
Wilkinson, B. & Micklefield, J. Biosynthesis of nonribosomal peptide precursors. Methods Enzymol. 458, 353–378 (2009).
Romano, A., Vitullo, D., Di Pietro, A., Lima, G. & Lanzotti, V. Antifungal lipopeptides from Bacillus amyloliquefaciens strain BO7. J. Nat. Prod. 74, 145–151 (2011).
Li, M.H., Ung, P.M., Zajkowski, J., Garneau-Tsodikova, S. & Sherman, D.H. Automated genome mining for natural products. BMC Bioinformatics 10, 185 (2009).
Medema, M.H. et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters. Nucleic Acids Res. 39, W339–W346 (2011).
Bodanszky, M., Izdebski, J. & Muramatsu, I. Structure of the peptide antibiotic stendomycin. J. Am. Chem. Soc. 91, 2351–2358 (1969).
Strieker, M. & Marahiel, M.A. The structural diversity of acidic lipopeptide antibiotics. ChemBioChem 10, 607–616 (2009).
Roongsawang, N., Washio, K. & Morikawa, M. Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int. J. Mol. Sci. 12, 141–172 (2010).
Visca, P., Imperi, F. & Lamont, I.L. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol. 15, 22–30 (2007).
Liu, W.T., Kersten, R.D., Yang, Y.L., Moore, B.S. & Dorrestein, P.C. Imaging mass spectrometry and genome mining via short sequence tagging identified the anti-infective agent arylomycin in Streptomyces roseosporus. J. Am. Chem. Soc. (in the press).
Caboche, S., Leclere, V., Pupin, M., Kucherov, G. & Jacques, P. Diversity of monomers in nonribosomal peptides: towards the prediction of origin and biological activity. J. Bacteriol. 192, 5143–5150 (2010).
Kawulka, K.E. et al. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to α-carbon cross-links: formation and reduction of α-thio-α-amino acid derivatives. Biochemistry 43, 3385–3395 (2004).
Knappe, T.A., Linne, U., Xie, X. & Marahiel, M.A. The glucagon receptor antagonist BI-32169 constitutes a new class of lasso peptides. FEBS Lett. 584, 785–789 (2010).
Bentley, S.D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).
Nett, M., Ikeda, H. & Moore, B.S. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep. 26, 1362–1384 (2009).
Vats, P. & Rothfield, L. Duplication and segregation of the actin (MreB) cytoskeleton during the prokaryotic cell cycle. Proc. Natl. Acad. Sci. USA 104, 17795–17800 (2007).
Miao, V. et al. Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151, 1507–1523 (2005).
Koal, T. & Deigner, H.P. Challenges in mass spectrometry based targeted metabolomics. Curr. Mol. Med. 10, 216–226 (2010).
Warren, A.S., Archuleta, J., Feng, W.C. & Setubal, J.C. Missing genes in the annotation of prokaryotic genomes. BMC Bioinformatics 11, 131 (2010).
Röttig, M. et al. NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 39, W362–W367 (2011).
Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2009).
Acknowledgements
We thank N. Castellana and V. Bafna for providing the algorithm to enable the six-frame translations of supercontigs. We also thank M. Meehan for FTMS training. Financial support was provided by the US National Institutes of Health (GM085770 to B.S.M. and GM086283 to P.C.D.) and the Beckman Foundation.
Author information
Authors and Affiliations
Contributions
R.D.K. designed and carried out experiments, analyzed data and wrote the paper. Y.-L.Y., Y.X. and S.-J.N. carried out experiments and analyzed data. P.C. and M.A.F. carried out the bioinformatic analysis and analyzed data. W.F. analyzed data. B.S.M. and P.C.D. designed experiments, analyzed data and wrote the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Methods, Supplementary Results, Supplementary Tables 1–13 and Supplementary Figures 1–17 (PDF 7941 kb)
Supplementary Table 6
Mass shifts of RNP monomers and modifications and their corresponding precursor amino acids in precursor peptides (XLS 38 kb)
Supplementary Table 7
Mass shifts of NRP monomers (NORINE monomer list excluding lipids) and corresponding NRPS monomers and genome mining accessibility by NRPSpredictor2 (AntiSMASH, * - biosynthetic monomers can be putative due to lack of biosynthetic knowledge) (XLS 75 kb)
Rights and permissions
About this article
Cite this article
Kersten, R., Yang, YL., Xu, Y. et al. A mass spectrometry–guided genome mining approach for natural product peptidogenomics. Nat Chem Biol 7, 794–802 (2011). https://doi.org/10.1038/nchembio.684
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchembio.684
This article is cited by
-
sORFPred: A Method Based on Comprehensive Features and Ensemble Learning to Predict the sORFs in Plant LncRNAs
Interdisciplinary Sciences: Computational Life Sciences (2023)
-
Bioprospecting the microbiome of Red Sea Atlantis II brine pool for peptidases and biosynthetic genes with promising antibacterial activity
Microbial Cell Factories (2022)
-
Mass spectrometry-based metabolomics in microbiome investigations
Nature Reviews Microbiology (2022)
-
Strategies to access biosynthetic novelty in bacterial genomes for drug discovery
Nature Reviews Drug Discovery (2022)
-
Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery
Nature Communications (2021)