Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance

Abstract

Acid chaperones are essential factors in preserving the protein homeostasis for enteric pathogens to survive in the extremely acidic mammalian stomach (pH 1–3). The client proteins of these chaperones remain largely unknown, primarily because of the exceeding difficulty of determining protein-protein interactions under low-pH conditions. We developed a genetically encoded, highly efficient protein photocrosslinking probe, which enabled us to profile the in vivo substrates of a major acid-protection chaperone, HdeA, in Escherichia coli periplasm. Among the identified HdeA client proteins, the periplasmic chaperones DegP and SurA were initially found to be protected by HdeA at a low pH, but they subsequently facilitated the HdeA-mediated acid recovery of other client proteins. This unique, ATP-independent chaperone cooperation in the ATP-deprived E. coli periplasm may support the acid resistance of enteric bacteria. The crosslinker would be valuable in unveiling the physiological interaction partners of any given protein and thus their functions under normal and stress conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of the DiZPK protein photocrosslinker.
Figure 2: Identifying the native client proteins of HdeA under acid stress.
Figure 3: The cooperative mode between HdeA and SurA/DegP during acid stress and recovery.
Figure 4: A chaperone-cooperation model for bacterial acid resistance.

Similar content being viewed by others

References

  1. Wickner, S., Maurizi, M.R. & Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Hartl, F.U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16, 574–581 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Clausen, T., Southan, C. & Ehrmann, M. The HtrA family of proteases: Implications for protein composition and cell fate. Mol. Cell 10, 443–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Sklar, J.G., Wu, T., Kahne, D. & Silhavy, T.J. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev. 21, 2473–2484 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hagan, C.L., Kim, S. & Kahne, D. Reconstitution of outer membrane protein assembly from purified components. Science 328, 890–892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mogensen, J.E. & Otzen, D.E. Interactions between folding factors and bacterial outer membrane proteins. Mol. Microbiol. 57, 326–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, B. & Houry, W.A. Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival. Biochem. Cell Biol. 88, 301–314 (2010).

    CAS  Google Scholar 

  8. Foster, J.W. Escherichia coli acid resistance: tales of an amateur acidophile. Nat. Rev. Microbiol. 2, 898–907 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Gajiwala, K.S. & Burley, S.K. HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria. J. Mol. Biol. 295, 605–612 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Wu, Y.E., Hong, W., Liu, C., Zhang, L. & Chang, Z. Conserved amphiphilic feature is essential for periplasmic chaperone HdeA to support acid resistance in enteric bacteria. Biochem. J. 412, 389–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Hong, W. et al. Periplasmic protein HdeA exhibits chaperone-like activity exclusively within stomach pH range by transforming into disordered conformation. J. Biol. Chem. 280, 27029–27034 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Malki, A. et al. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB. J. Biol. Chem. 283, 13679–13687 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Tapley, T.L. et al. Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding. Proc. Natl. Acad. Sci. USA 106, 5557–5562 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Tapley, T.L., Franzmann, T.M., Chakraborty, S., Jakob, U. & Bardwell, J.C.A. Protein refolding by pH-triggered chaperone binding and release. Proc. Natl. Acad. Sci. USA 107, 1071–1076 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Chin, J.W., Martin, A.B., King, D.S., Wang, L. & Schultz, P.G. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 11020–11024 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Hino, N. et al. Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid. Nat. Methods 2, 201–206 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Tippmann, E.M., Liu, W., Surnmerer, D., Mack, A.V. & Schultz, P.G. A genetically encoded diazirine photocrosslinker in Escherichia coli. ChemBioChem 8, 2210–2214 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka, Y., Bond, M.R. & Kohler, J.J. Photocrosslinkers illuminate interactions in living cells. Mol. Biosyst. 4, 473–480 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Majmudar, C.Y. et al. Impact of nonnatural amino acid mutagenesis on the in vivo function and binding modes of a transcriptional activator. J. Am. Chem. Soc. 131, 14240–14242 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, C.C. & Schultz, P.G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Hancock, S.M., Uprety, R., Deiters, A. & Chin, J.W. Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. J. Am. Chem. Soc. 132, 14819–14824 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vila-Perelló, M., Pratt, M.R., Tulin, F. & Muir, T.W. Covalent capture of phospho-dependent protein oligomerization by site-specific incorporation of a diazirine photo-cross-linker. J. Am. Chem. Soc. 129, 8068–8069 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tanaka, Y. & Kohler, J.J. Photoactivatable crosslinking sugars for capturing glycoprotein interactions. J. Am. Chem. Soc. 130, 3278–3279 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Hao, B. et al. A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296, 1462–1466 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Srinivasan, G., James, C.M. & Krzycki, J.A. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296, 1459–1462 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Mukai, T. et al. Adding L-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases. Biochem. Biophys. Res. Commun. 371, 818–822 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Neumann, H., Peak-Chew, S.Y. & Chin, J.W. Genetically encoding Nɛ-acetyllysine in recombinant proteins. Nat. Chem. Biol. 4, 232–234 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, P.R. et al. A facile System for encoding unnatural amino acids in mammalian cells. Angew. Chem. Int. Ed. Engl. 48, 4052–4055 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fekner, T., Li, X. & Chan, M.K. Pyrrolysine analogs for translational incorporation into proteins. European J. Org. Chem. 4171–4179 (2010).

  30. Huang, Y. et al. Genetic incorporation of an aliphatic keto-containing amino acid into proteins for their site-specific modifications. Bioorg. Med. Chem. Lett. 20, 878–880 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Nara Institute of Science and Technology (Ikoma, Nara, Japan) for E. coli strains BW25113 and JWK3478 and P. Schultz for the aminoacyl-tRNA synthetase and tRNA expression vectors. We are grateful to W. Hong, Y. Liu and C. Liu for valuable discussions. We would also like to thank T. Kellie of the Graduate University of the Chinese Academy of Sciences for his editorial assistance. This work was supported by research grants from the National Natural Science Foundation of China (91013005 and 21001010 to P.R.C., 30570355 and 30670022 to Z.C.) and the National Key Basic Research Foundation of China (2010CB912300 to P.R.C., 2006CB806508 and 2006CB910300 to Z.C.).

Author information

Authors and Affiliations

Authors

Contributions

M.Z. and S.L. performed most of the experiments and interpreted data. X.S., J.L. and X.G. provided reagents and helped on part of the experiments. Y.F. helped on the initial synthesis of the photocrosslinker compound. X.F. interpreted data. P.R.C. and Z.C. conceived the study, designed experiments, interpreted data and wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Zengyi Chang or Peng R Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 3703 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Lin, S., Song, X. et al. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. Nat Chem Biol 7, 671–677 (2011). https://doi.org/10.1038/nchembio.644

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.644

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing