Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inactive-state preassembly of Gq-coupled receptors and Gq heterotrimers

Abstract

G protein–coupled receptors (GPCRs) transmit signals by forming active-state complexes with heterotrimeric G proteins. It has been suggested that some GPCRs also assemble with G proteins before ligand-induced activation and that inactive-state preassembly facilitates rapid and specific G protein activation. However, no mechanism of preassembly has been described, and no functional consequences of preassembly have been demonstrated. Here we show that M3 muscarinic acetylcholine receptors (M3R) form inactive-state complexes with Gq heterotrimers in intact cells. The M3R C terminus is sufficient, and a six-amino-acid polybasic sequence distal to helix 8 (565KKKRRK570) is necessary for preassembly with Gq. Replacing this sequence with six alanine residues prevents preassembly, slows the rate of Gq activation and decreases steady-state agonist sensitivity. That other Gq-coupled receptors possess similar polybasic regions and also preassemble with Gq suggests that these GPCRs may use a common preassembly mechanism to facilitate activation of Gq heterotrimers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immobile C-M3R decreases Gαq-V mobility.
Figure 2: Receptor activity does not affect Gαq-V mobility in intact cells.
Figure 3: The M3R C terminus is necessary and sufficient for preassembly with Gq.
Figure 4: A polybasic region in the M3R C terminus is necessary for preassembly with Gq.
Figure 5: Preassembly involves an electrostatic interaction and requires an electronegative plasma membrane.
Figure 6: A polybasic region in the M3R C terminus is necessary for efficient activation of Gq.

Similar content being viewed by others

References

  1. Gilman, A.G. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649 (1987).

    CAS  PubMed  Google Scholar 

  2. De Lean, A., Stadel, J.M. & Lefkowitz, R.J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J. Biol. Chem. 255, 7108–7117 (1980).

    CAS  PubMed  Google Scholar 

  3. Oldham, W.M. & Hamm, H.E. Structural basis of function in heterotrimeric G proteins. Q. Rev. Biophys. 39, 117–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Wess, J. et al. Structural basis of receptor/G protein coupling selectivity studied with muscarinic receptors as model systems. Life Sci. 60, 1007–1014 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Rasmussen, S.G.F . et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature advance online publication, <http://dx.doi.org/10.1038/nature10361> (19 July 2011).

  6. Neubig, R.R. Membrane organization in G-protein mechanisms. FASEB J. 8, 939–946 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Hein, P. & Bunemann, M. Coupling mode of receptors and G proteins. Naunyn Schmiedebergs Arch. Pharmacol. 379, 435–443 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Rebois, R.V. & Hebert, T.E. Protein complexes involved in heptahelical receptor-mediated signal transduction. Receptors Channels 9, 169–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Galés, C. et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nat. Methods 2, 177–184 (2005).

    Article  PubMed  Google Scholar 

  10. Galés, C. et al. Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat. Struct. Mol. Biol. 13, 778–786 (2006).

    Article  PubMed  Google Scholar 

  11. Nobles, M., Benians, A. & Tinker, A. Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc. Natl. Acad. Sci. USA 102, 18706–18711 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Tolkovsky, A.M. & Levitzki, A. Mode of coupling between the beta-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry 17, 3795 (1978).

    Article  CAS  PubMed  Google Scholar 

  13. Kuravi, S., Lan, T.H., Barik, A. & Lambert, N.A. Third-party bioluminescence resonance energy transfer indicates constitutive association of membrane proteins: application to class A G-protein-coupled receptors and G-proteins. Biophys. J. 98, 2391–2399 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heo, W.D. et al. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314, 1458–1461 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yeung, T. et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319, 210–213 (2008).

    Article  CAS  Google Scholar 

  16. Torrecilla, I. & Tobin, A.B. Co-ordinated covalent modification of G-protein coupled receptors. Curr. Pharm. Des. 12, 1797–1808 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Lohse, M.J., Hoffmann, C., Nikolaev, V.O., Vilardaga, J.P. & Bunemann, M. Kinetic analysis of G protein-coupled receptor signaling using fluorescence resonance energy transfer in living cells. Adv. Protein Chem. 74, 167–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Hofmann, K.P. et al. A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem. Sci. 34, 540–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Altenbach, C., Kusnetzow, A.K., Ernst, O.P., Hofmann, K.P. & Hubbell, W.L. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc. Natl. Acad. Sci. USA 105, 7439–7444 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Scheerer, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497–502 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Ye, S. et al. Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature 464, 1386–1389 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Yao, X.J. et al. The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex. Proc. Natl. Acad. Sci. USA 106, 9501–9506 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Hein, P., Frank, M., Hoffmann, C., Lohse, M.J. & Bunemann, M. Dynamics of receptor/G protein coupling in living cells. EMBO J. 24, 4106–4114 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qin, K., Sethi, P.R. & Lambert, N.A. Abundance and stability of complexes containing inactive G protein-coupled receptors and G proteins. FASEB J. 22, 2920–2927 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu, J. et al. Structural basis of G protein-coupled receptor-G protein interactions. Nat. Chem. Biol. 6, 541–548 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ernst, O.P. et al. Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin alpha and gamma subunits. J. Biol. Chem. 275, 1937–1943 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Marin, E.P. et al. The amino terminus of the fourth cytoplasmic loop of rhodopsin modulates rhodopsin-transducin interaction. J. Biol. Chem. 275, 1930–1936 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Hemsath, L., Dvorsky, R., Fiegen, D., Carlier, M.F. & Ahmadian, M.R. An electrostatic steering mechanism of Cdc42 recognition by Wiskott-Aldrich syndrome proteins. Mol. Cell 20, 313–324 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Pedone, K.H. & Hepler, J.R. The importance of N-terminal polycysteine and polybasic sequences for G14alpha and G16alpha palmitoylation, plasma membrane localization, and signaling function. J. Biol. Chem. 282, 25199–25212 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605–611 (2005).

    Article  CAS  Google Scholar 

  31. Crouthamel, M., Thiyagarajan, M.M., Evanko, D.S. & Wedegaertner, P.B. N-terminal polybasic motifs are required for plasma membrane localization of Galpha(s) and Galpha(q). Cell. Signal. 20, 1900–1910 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ostrom, R.S., Post, S.R. & Insel, P.A. Stoichiometry and compartmentation in G protein-coupled receptor signaling: implications for therapeutic interventions involving G(s). J. Pharmacol. Exp. Ther. 294, 407–412 (2000).

    CAS  PubMed  Google Scholar 

  33. Hille, B. G protein-coupled mechanisms and nervous signaling. Neuron 9, 187–195 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Jensen, J.B., Lyssand, J.S., Hague, C. & Hille, B. Fluorescence changes reveal kinetic steps of muscarinic receptor-mediated modulation of phosphoinositides and Kv7.2/7.3 K+ channels. J. Gen. Physiol. 133, 347–359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Falkenburger, B.H., Jensen, J.B. & Hille, B. Kinetics of M1 muscarinic receptor and G protein signaling to phospholipase C in living cells. J. Gen. Physiol. 135, 81–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hughes, T.E., Zhang, H., Logothetis, D.E. & Berlot, C.H. Visualization of a functional Galpha q-green fluorescent protein fusion in living cells. Association with the plasma membrane is disrupted by mutational activation and by elimination of palmitoylation sites, but not be activation mediated by receptors or AlF4. J. Biol. Chem. 276, 4227–4235 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Hynes, T.R. et al. Visualization of G protein betagamma dimers using bimolecular fluorescence complementation demonstrates roles for both beta and gamma in subcellular targeting. J. Biol. Chem. 279, 30279–30286 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Church, J.E. & Fulton, D. Differences in eNOS activity because of subcellular localization are dictated by phosphorylation state rather than the local calcium environment. J. Biol. Chem. 281, 1477–1488 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Digby and S. Kuravi for invaluable assistance. This work was supported by US National Institutes of Health grants GM076167 (G.W.), GM096762 and GM078319 (N.A.L.).

Author information

Authors and Affiliations

Authors

Contributions

K.Q. designed and performed experiments and analyzed data; C.D. performed experiments; G.W. designed experiments and analyzed data; N.A.L. designed experiments, analyzed data and wrote the paper.

Corresponding author

Correspondence to Nevin A Lambert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 2178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, K., Dong, C., Wu, G. et al. Inactive-state preassembly of Gq-coupled receptors and Gq heterotrimers. Nat Chem Biol 7, 740–747 (2011). https://doi.org/10.1038/nchembio.642

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.642

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing