Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRPA1 underlies a sensing mechanism for O2

Abstract

Oxygen (O2) is a prerequisite for cellular respiration in aerobic organisms but also elicits toxicity. To understand how animals cope with the ambivalent physiological nature of O2, it is critical to elucidate the molecular mechanisms responsible for O2 sensing. Here our systematic evaluation of transient receptor potential (TRP) cation channels using reactive disulfides with different redox potentials reveals the capability of TRPA1 to sense O2. O2 sensing is based upon disparate processes: whereas prolyl hydroxylases (PHDs) exert O2-dependent inhibition on TRPA1 activity in normoxia, direct O2 action overrides the inhibition via the prominent sensitivity of TRPA1 to cysteine-mediated oxidation in hyperoxia. Unexpectedly, TRPA1 is activated through relief from the same PHD-mediated inhibition in hypoxia. In mice, disruption of the Trpa1 gene abolishes hyperoxia- and hypoxia-induced cationic currents in vagal and sensory neurons and thereby impedes enhancement of in vivo vagal discharges induced by hyperoxia and hypoxia. The results suggest a new O2-sensing mechanism mediated by TRPA1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The prominent oxidation reactivity confers O2 sensitivity on TRPA1.
Figure 2: O2 directly activates TRPA1 through cysteine modification.
Figure 3: Hypoxia activates TRPA1.
Figure 4: TRPA1 protein is susceptible to proline hydroxylation by PHDs.
Figure 5: TRPA1 is activated by relief from O2-dependent inhibition by proline hydroxylation.
Figure 6: TRPA1 mediates hyperoxia- and hypoxia-induced cationic currents in vagal and sensory neurons.
Figure 7: Defects of discharges in vagal afferents of Trpa1 knockout mice under systemic hypoxia and hyperoxia.
Figure 8: Molecular mechanism underlying O2-sensing in TRPA1 channel.

Similar content being viewed by others

References

  1. Lane, N. Oxygen: The Molecule That Made the World (Oxford Univ. Press, Oxford, 2002).

  2. Gonzalez, C., Almaraz, L., Obeso, A. & Rigual, R. Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol. Rev. 74, 829–898 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Neubauer, J.A. & Sunderram, J. Oxygen-sensing neurons in the central nervous system. J. Appl. Physiol. 96, 367–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Weir, E.K., López-Barneo, J., Buckler, K.J. & Archer, S.L. Acute oxygen-sensing mechanisms. N. Engl. J. Med. 353, 2042–2055 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Howe, A., Pack, R.J. & Wise, J.C. Arterial chemoreceptor-like activity in the abdominal vagus of the rat. J. Physiol. (Lond.) 320, 309–318 (1981).

    Article  CAS  Google Scholar 

  6. De Sanctis, G.T., Green, F.H. & Remmers, J.E. Ventilatory responses to hypoxia and hypercapnia in awake rats pretreated with capsaicin. J. Appl. Physiol. 70, 1168–1174 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Gruss, M. et al. Moderate hypoxia influences excitability and blocks dendrotoxin sensitive K+ currents in rat primary sensory neurones. Mol. Pain 2, 12 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Longhurst, J.C. Tjen-A-Looi, S.C. & Fu, L.W. Cardiac sympathetic afferent activation provoked by myocardial ischemia and reperfusion. Mechanisms and reflexes. Ann. NY Acad. Sci. 940, 74–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Gray, J.M. et al. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430, 317–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Hetz, S.K. & Bradley, T.J. Insects breathe discontinuously to avoid oxygen toxicity. Nature 433, 516–519 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Clapham, D.E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Voets, T., Talavera, K., Owsianik, G. & Nilius, B. Sensing with TRP channels. Nat. Chem. Biol. 1, 85–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Hara, Y. et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell 9, 163–173 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Yoshida, T. et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat. Chem. Biol. 2, 596–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Xu, S.Z. et al. TRPC channel activation by extracellular thioredoxin. Nature 451, 69–72 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aarts, M. et al. A key role for TRPM7 channels in anoxic neuronal death. Cell 115, 863–877 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Bessac, B.F. et al. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J. Clin. Invest. 118, 1899–1910 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hinman, A., Chuang, H.H., Bautista, D.M. & Julius, D. TRP channel activation by reversible covalent modification. Proc. Natl. Acad. Sci. USA 103, 19564–19568 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Macpherson, L.J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi, N. et al. Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels (Austin) 2, 287–298 (2008).

    Article  Google Scholar 

  21. Story, G.M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Nagatomo, K. & Kubo, Y. Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels. Proc. Natl. Acad. Sci. USA 105, 17373–17378 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Gracheva, E.O. et al. Molecular basis of infrared detection by snakes. Nature 464, 1006–1011 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bessac, B.F. & Jordt, S.E. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda) 23, 360–370 (2008).

    CAS  Google Scholar 

  25. Caterina, M.J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Nagata, K., Duggan, A., Kumar, G. & García-Añoveros, J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J. Neurosci. 25, 4052–4061 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Nassenstein, C. et al. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J. Physiol. (Lond.) 586, 1595–1604 (2008).

    Article  CAS  Google Scholar 

  28. Topol, I.A. et al. Experimental determination and calculations of redox potential descriptors of compounds directed against retroviral zinc fingers: Implications for rational drug design. Protein Sci. 10, 1434–1445 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wallace, T.J., Schriesheim, A. & Bartok, W. The base-catalyzed oxidation of mercaptans. III. Role of the solvent and effect of mercaptan structure on the rate determining step. J. Org. Chem. 28, 1311–1314 (1963).

    Article  CAS  Google Scholar 

  30. Petrus, M. et al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain 3, 40 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim, D. & Cavanaugh, E.J. Requirement of a soluble intracellular factor for activation of transient receptor potential A1 by pungent chemicals: role of inorganic polyphosphates. J. Neurosci. 27, 6500–6509 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Schofield, C.J. & Ratcliffe, P.J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5, 343–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Webb, J.D., Coleman, M.L. & Pugh, C.W. Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell. Mol. Life Sci. 66, 3539–3554 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Bezzerides, V.J., Ramsey, I.S., Kotecha, S., Greka, A. & Clapham, D.E. Rapid vesicular translocation and insertion of TRP channels. Nat. Cell Biol. 6, 709–720 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt, M., Dubin, A.E., Petrus, M.J., Earley, T.J. & Patapoutian, A. Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron 64, 498–509 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Kwan, K.Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Aragonés, J. et al. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet. 40, 170–180 (2008).

    Article  PubMed  Google Scholar 

  39. Bishop, T. et al. Abnormal sympathoadrenal development and systemic hypotension in PHD3−/− mice. Mol. Cell. Biol. 28, 3386–3400 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takeda, K. et al. Placental but not heart defects are associated with elevated hypoxia-inducible factor α levels in mice lacking prolyl hydroxylase domain protein 2. Mol. Cell. Biol. 26, 8336–8346 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dinkova-Kostova, A.T. et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA 99, 11908–11913 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Hathout, Y. et al. Characterization of intermediates in the oxidation of zinc fingers in human immunodeficiency virus type 1 nucleocapsid protein P7. Drug Metab. Dispos. 24, 1395–1400 (1996).

    CAS  PubMed  Google Scholar 

  43. Voss, A.A., Lango, J., Ernst-Russell, M., Morin, D. & Pessah, I.N. Identification of hyperreactive cysteines within ryanodine receptor type 1 by mass spectrometry. J. Biol. Chem. 279, 34514–34520 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Ghezzi, P. Regulation of protein function by glutathionylation. Free Radic. Res. 39, 573–580 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Hu, H., Bandell, M., Petrus, M.J., Zhu, M.X. & Patapoutian, A. Zinc activates damage-sensing TRPA1 ion channels. Nat. Chem. Biol. 5, 183–190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Y.Y., Chang, R.B. & Liman, E.R. TRPA1 is a component of the nociceptive response to CO2 . J. Neurosci. 30, 12958–12963 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Semenza, G.L. & Wang, G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12, 5447–5454 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meller, S.T. & Gebhart, G.F. A critical review of the afferent pathways and the potential chemical mediators involved in cardiac pain. Neuroscience 48, 501–524 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Kubin, L., Alheid, G.F., Zuperku, E.J. & McCrimmon, D.R. Central pathways of pulmonary and lower airway vagal afferents. J. Appl. Physiol. 101, 618–627 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mcelroy, M.B. The Atmospheric Environment: Effects of Human Activity (Princeton University Press, 2002).

Download references

Acknowledgements

We thank D. Julius, T. Yoshida and M. Wakamori for experimental advice, T. Miki and J. Ikenouchi for helpful discussions, and T. Morii and I. Hamachi for their support in DTNB-2Bio synthesis. We are also grateful to T. Niidome, H. Shirakawa and T. Nakagawa for their support in mouse experiments.

Author information

Authors and Affiliations

Authors

Contributions

N.T., S. Kiyonaka, Y. Mizuno and Y. Mori initiated and designed the project. N.T., S. Kiyonaka, T. Numata, D.K., Y. Mizuno, S.Y., S.N., T.O., S. Kaneko and T. Nokami performed experiments and analyzed data. T.K. supervised in vivo studies. S.S. and J.Y. supervised the electrochemical experiments. E.K. and P.C. established Phd1 knockout and Phd3 knockout mouse lines subjected to the experiment. N.T., T.K., S. Kiyonaka, T. Numata, D.K. and Y. Mori wrote the manuscript. Y. Mori directed the research. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Yasuo Mori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 12469 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, N., Kuwaki, T., Kiyonaka, S. et al. TRPA1 underlies a sensing mechanism for O2. Nat Chem Biol 7, 701–711 (2011). https://doi.org/10.1038/nchembio.640

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.640

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing