Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural principles of nucleoside selectivity in a 2′-deoxyguanosine riboswitch

Abstract

Purine riboswitches have an essential role in genetic regulation of bacterial metabolism. This family includes the 2′-deoxyguanosine (dG) riboswitch, which is involved in feedback control of deoxyguanosine biosynthesis. To understand the principles that define dG selectivity, we determined crystal structures of the natural Mesoplasma florum riboswitch bound to cognate dG as well as to noncognate guanosine, deoxyguanosine monophosphate and guanosine monophosphate. Comparison with related purine riboswitch structures reveals that the dG riboswitch achieves its specificity through modification of key interactions involving the nucleobase and rearrangement of the ligand-binding pocket to accommodate the additional sugar moiety. In addition, we observe new conformational changes beyond the junctional binding pocket extending as far as peripheral loop-loop interactions. It appears that re-engineering riboswitch scaffolds will require consideration of selectivity features dispersed throughout the riboswitch tertiary fold, and structure-guided drug design efforts targeted to junctional RNA scaffolds need to be addressed within such an expanded framework.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure and tertiary interactions of the dG-bound M. florum riboswitch.
Figure 2: Structural features of the dG-binding pocket.
Figure 3: Comparison of junctional regions above the ligand-binding pockets in the dG and guanine riboswitches.
Figure 4: Tertiary loop-loop interactions in the dG riboswitch.
Figure 5: Specificity of dG recognition by the riboswitch.
Figure 6: Summary of dG recognition.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Nudler, E. & Mironov, A.S. The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 29, 11–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Roth, A. & Breaker, R.R. The structural and functional diversity of metabolite-binding riboswitches. Annu. Rev. Biochem. 78, 305–334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Serganov, A. & Patel, D.J. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat. Rev. Genet. 8, 776–790 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Montange, R.K. & Batey, R.T. Riboswitches: emerging themes in RNA structure and function. Annu. Rev. Biophys. 37, 117–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Roth, A. et al. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain. Nat. Struct. Mol. Biol. 14, 308–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Corbino, K.A. et al. Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol. 6, R70 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Epshtein, V., Mironov, A.S. & Nudler, E. The riboswitch-mediated control of sulfur metabolism in bacteria. Proc. Natl. Acad. Sci. USA 100, 5052–5056 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Fuchs, R.T., Grundy, F.J. & Henkin, T.M. The S(MK) box is a new SAM-binding RNA for translational regulation of SAM synthetase. Nat. Struct. Mol. Biol. 13, 226–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. McDaniel, B.A., Grundy, F.J., Artsimovitch, I. & Henkin, T.M. Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. Proc. Natl. Acad. Sci. USA 100, 3083–3088 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Serganov, A. Determination of riboswitch structures: light at the end of the tunnel? RNA Biol. 7, 98–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Mandal, M. & Breaker, R.R. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat. Struct. Mol. Biol. 11, 29–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Mandal, M., Boese, B., Barrick, J.E., Winkler, W.C. & Breaker, R.R. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113, 577–586 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, J.N., Roth, A. & Breaker, R.R. Guanine riboswitch variants from Mesoplasma florum selectively recognize 2′-deoxyguanosine. Proc. Natl. Acad. Sci. USA 104, 16092–16097 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Batey, R.T., Gilbert, S.D. & Montange, R.K. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432, 411–415 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Serganov, A. et al. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11, 1729–1741 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noeske, J. et al. An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. Proc. Natl. Acad. Sci. USA 102, 1372–1377 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Edwards, A.L. & Batey, R.T. A structural basis for the recognition of 2′-deoxyguanosine by the purine riboswitch. J. Mol. Biol. 385, 938–948 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Gardner, P.P. et al. Rfam: updates to the RNA families database. Nucleic Acids Res. 37, D136–D140 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Lemay, J.F. & Lafontaine, D.A. Core requirements of the adenine riboswitch aptamer for ligand binding. RNA 13, 339–350 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mulhbacher, J. & Lafontaine, D.A. Ligand recognition determinants of guanine riboswitches. Nucleic Acids Res. 35, 5568–5580 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de la Peña, M., Dufour, D. & Gallego, J. Three-way RNA junctions with remote tertiary contacts: a recurrent and highly versatile fold. RNA 15, 1949–1964 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lemay, J.F., Penedo, J.C., Tremblay, R., Lilley, D.M. & Lafontaine, D.A. Folding of the adenine riboswitch. Chem. Biol. 13, 857–868 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Gilbert, S.D., Love, C.E., Edwards, A.L. & Batey, R.T. Mutational analysis of the purine riboswitch aptamer domain. Biochemistry 46, 13297–13309 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gilbert, S.D., Mediatore, S.J. & Batey, R.T. Modified pyrimidines specifically bind the purine riboswitch. J. Am. Chem. Soc. 128, 14214–14215 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Gilbert, S.D., Reyes, F.E., Edwards, A.L. & Batey, R.T. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs. Structure 17, 857–868 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gilbert, S.D., Stoddard, C.D., Wise, S.J. & Batey, R.T. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. J. Mol. Biol. 359, 754–768 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Jain, N., Zhao, L., Liu, J.D. & Xia, T. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches. Biochemistry 49, 3703–3714 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Gilbert, S.D., Rambo, R.P., Van Tyne, D. & Batey, R.T. Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nat. Struct. Mol. Biol. 15, 177–182 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Lu, C. et al. Crystal structures of the SAM-III/SMK riboswitch reveal the SAM-dependent translation inhibition mechanism. Nat. Struct. Mol. Biol. 15, 1076–1083 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Montange, R.K. & Batey, R.T. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441, 1172–1175 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Edwards, A.L., Reyes, F.E., Heroux, A. & Batey, R.T. Structural basis for recognition of S-adenosylhomocysteine by riboswitches. RNA 16, 2144–2155 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wacker, A. et al. Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy. Nucleic Acids Res. published online, doi:10.1093/nar/gkr238 (16 May 2011).

  33. Stoddard, C.D., Gilbert, S.D. & Batey, R.T. Ligand-dependent folding of the three-way junction in the purine riboswitch. RNA 14, 675–684 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Greenleaf, W.J., Frieda, K.L., Foster, D.A., Woodside, M.T. & Block, S.M. Direct observation of hierarchical folding in single riboswitch aptamers. Science 319, 630–633 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brenner, M.D., Scanlan, M.S., Nahas, M.K., Ha, T. & Silverman, S.K. Multivector fluorescence analysis of the xpt guanine riboswitch aptamer domain and the conformational role of guanine. Biochemistry 49, 1596–1605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ottink, O.M. et al. Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism. RNA 13, 2202–2212 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Noeske, J., Schwalbe, H. & Wohnert, J. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain. Nucleic Acids Res. 35, 5262–5273 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rieder, R., Lang, K., Graber, D. & Micura, R. Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control. ChemBioChem 8, 896–902 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Noeske, J. et al. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch. Nucleic Acids Res. 35, 572–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Buck, J., Noeske, J., Wohnert, J. & Schwalbe, H. Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain. Nucleic Acids Res. 38, 4143–4153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Serganov, A., Huang, L. & Patel, D.J. Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature 455, 1263–1267 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Serganov, A., Huang, L. & Patel, D.J. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 458, 233–237 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Delfosse, V. et al. Riboswitch structure: an internal residue mimicking the purine ligand. Nucleic Acids Res. 38, 2057–2068 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Dixon, N. et al. Reengineering orthogonally selective riboswitches. Proc. Natl. Acad. Sci. USA 107, 2830–2835 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, J.N. et al. Design and antimicrobial action of purine analogues that bind guanine riboswitches. ACS Chem. Biol. 4, 915–927 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mulhbacher, J. et al. Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways. PLoS Pathog. 6, e1000865 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  PubMed  Google Scholar 

  48. de la Fortelle, E.l. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multi-wavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  PubMed  Google Scholar 

  50. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the personnel of beamline X29 at the Brookhaven National Laboratory, funded by the US Department of Energy, for assistance in data collection. We thank O. Ouerfelli (Memorial Sloan-Kettering Cancer Center, New York) for the synthesis of iridium hexamine and E. Ennifar (Institut de Biologie Moléculaire et Cellulaire, Strasbourg) for the discussion of the refinement strategy. D.J.P. was supported by funds from the US National Institutes of Health grant GM66354.

Author information

Authors and Affiliations

Authors

Contributions

A.P. and O.P. crystallized the riboswitch. O.P. determined the structures. O.P. and A.S. refined the structures and performed binding experiments. A.S. and D.J.P. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Dinshaw J Patel or Alexander Serganov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–2 and Supplementary Results (PDF 8040 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pikovskaya, O., Polonskaia, A., Patel, D. et al. Structural principles of nucleoside selectivity in a 2′-deoxyguanosine riboswitch. Nat Chem Biol 7, 748–755 (2011). https://doi.org/10.1038/nchembio.631

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.631

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing