Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Natural products reveal cancer cell dependence on oxysterol-binding proteins

Abstract

Cephalostatin 1, OSW-1, ritterazine B and schweinfurthin A are natural products that potently, and in some cases selectively, inhibit the growth of cultured human cancer cell lines. The cellular targets of these small molecules have yet to be identified. We have discovered that these molecules target oxysterol binding protein (OSBP) and its closest paralog, OSBP-related protein 4L (ORP4L)—proteins not known to be involved in cancer cell survival. OSBP and the ORPs constitute an evolutionarily conserved protein superfamily, members of which have been implicated in signal transduction, lipid transport and lipid metabolism. The functions of OSBP and the ORPs, however, remain largely enigmatic. Based on our findings, we have named the aforementioned natural products ORPphilins. Here we used ORPphilins to reveal new cellular activities of OSBP. The ORPphilins are powerful probes of OSBP and ORP4L that will be useful in uncovering their cellular functions and their roles in human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures.
Figure 2: OSBP and ORP4L are high-affinity receptors of ORPphilins.
Figure 3: shRNA knockdown, protein expression and SAR experiments support OSBP and ORP4L as targets of ORPphilins.
Figure 4: Suppression of antiproliferative activity by 25-OHC administration and effects of lipoprotein-deficient media on proliferation.
Figure 5: ORPphilins induce OSBP translocation in cells.
Figure 6: Cephalostatin 1 and OSW-1 cause proteasome-dependent reduction of cellular OSBP concentrations.
Figure 7: ORPphilins block sphingomyelin biosynthesis.

Similar content being viewed by others

References

  1. Pettit, G.R. et al. Antineoplastic agents. 147. Isolation and structure of the powerful cell growth inhibitor cephalostatin 1. J. Am. Chem. Soc. 110, 2006–2007 (1988).

    Article  CAS  Google Scholar 

  2. Kubo, S. et al. Acylated cholestane glycosides from the bulbs of Ornithogalum saundersiae. Phytochemistry 31, 3969–3973 (1992).

    Article  CAS  Google Scholar 

  3. Komiya, T. et al. Ritterazine B, a new cytotoxic natural compound, induces apoptosis in cancer cells. Cancer Chemother. Pharmacol. 51, 202–208 (2003).

    CAS  PubMed  Google Scholar 

  4. Beutler, J.A., Shoemaker, R.H., Johnson, T. & Boyd, M.R. Cytotoxic geranyl stilbenes from Macaranga schweinfurthii. J. Nat. Prod. 61, 1509–1512 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Tasdemir, D. et al. Bioactive isomalabaricane triterpenes from the marine sponge Rhabdastrella globostellata. J. Nat. Prod. 65, 210–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Moser, B.R. Review of cytotoxic cephalostatins and ritterazines: isolation and synthesis. J. Nat. Prod. 71, 487–491 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Beutler, J.A. et al. The schweinfurthins. in Medicinal and Aromatic Plants. Agricultural, Commercial, Ecological, Legal, Pharmacological and Social Aspects Ch. 22 (eds. Bogers, R.J. et al.) (Springer, 2006).

  8. Zhou, Y. et al. OSW-1: A natural compound with potent anticancer activity and a novel mechanism of action. J. Natl. Cancer Inst. 97, 1781–1785 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Rabow, A.A., Shoemaker, R.H., Sausville, E.A. & Covell, D.G. Mining the national cancer institute's tumor-screening database: identification of compounds with similar cellular activities. J. Med. Chem. 45, 818–840 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Mimaki, Y. et al. Cholestane glycosides with potent cytostatic activities on various tumor cells from Ornithogalum saundersiae bulbs. Bioorg. Med. Chem. Lett. 7, 633–636 (1997).

    Article  CAS  Google Scholar 

  11. Boyd, M.R. The NCI Human Tumor Cell Line (60-Cell) Screen: Concept, Implementation, and Applications. in Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval Ch. 3 (eds. Teicher, B.A. et al.) (Humana Press, 2004).

  12. Dirsch, V.M. et al. Cephalostatin 1 selectively triggers the release of Smac/DIABLO and subsequent apoptosis that is characterized by an increased density of the mitochondrial matrix. Cancer Res. 63, 8869–8876 (2003).

    CAS  PubMed  Google Scholar 

  13. Rudy, A., López-Antón, N., Dirsch, V.M. & Vollmar, A.M. The cephalostatin way of apoptosis. J. Nat. Prod. 71, 482–486 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Turbyville, T.J. et al. Schweinfurthin A selectively inhibits proliferation and Rho signaling in glioma and neurofibromatosis type 1 tumor cells in a NF1-GRD–dependent manner. Mol. Cancer Ther. 9, 1234–1243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abbas, T. & Dutta, A. p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer 9, 400–414 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan, D. & Olkkonen, V.M. Characteristics of oxysterol binding proteins. Int. Rev. Cytol. 265, 253–285 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Fairn, G.D. & McMaster, C.R. Emerging roles of the oxysterol-binding protein family in metabolism, transport, and signaling. Cell. Mol. Life Sci. 65, 228–236 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Yan, D. et al. Oxysterol binding protein induces upregulation of SREBP-1c and enhances hepatic lipogenesis. Arterioscler. Thromb. Vasc. Biol. 27, 1108–1114 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Yan, D. et al. Expression of human OSBP-related protein 1L in macrophages enhances atherosclerotic lesion development in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 27, 1618–1624 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Romeo, G.R. & Kazlauskas, A. Oxysterol and diabetes activate STAT3 and control endothelial expression of profilin-1 via OSBP1. J. Biol. Chem. 283, 9595–9605 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, P.-Y., Weng, J. & Anderson, R.G.W. OSBP is a cholesterol-regulated scaffolding protein in control of ERK 1/2 activation. Science 307, 1472–1476 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Ngo, M. & Ridgway, N.D. Oxysterol binding protein–related protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function. Mol. Biol. Cell 20, 1388–1399 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ngo, M.H., Colbourne, T.R. & Ridgway, N.D. Functional implications of sterol transport by the oxysterol-binding protein gene family. Biochem. J. 429, 13–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Schulz, T.A. et al. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues. J. Cell Biol. 187, 889–903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taylor, F.R. & Kandutsch, A.A. Oxysterol binding protein. Chem. Phys. Lipids 38, 187–194 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Dawson, P.A., Ridgway, N.D., Slaughter, C.A., Brown, M.S. & Goldstein, J.L. cDNA cloning and expression of oxysterol-binding protein, an oligomer with a potential leucine zipper. J. Biol. Chem. 264, 16798–16803 (1989).

    CAS  PubMed  Google Scholar 

  27. DeBerardinis, R.J., Sayed, N., Ditsworth, D. & Thompson, C.B. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 18, 54–61 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fortner, K.C., Kato, D., Tanaka, Y. & Shair, M.D. Enantioselective synthesis of (+)-cephalostatin 1. J. Am. Chem. Soc. 132, 275–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Wyles, J.P., McMaster, C.R. & Ridgway, N.D. Vesicle-associated membrane protein-associated protein-A (VAP-A) interacts with the oxysterol-binding protein to modify export from the endoplasmic reticulum. J. Biol. Chem. 277, 29908–29918 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Wyles, J.P. & Ridgway, N.D. VAMP-associated protein-A regulates partitioning of oxysterol-binding protein-related protein-9 between the endoplasmic reticulum and Golgi apparatus. Exp. Cell Res. 297, 533–547 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Wyles, J.P., Perry, R.J. & Ridgway, N.D. Characterization of the sterol-binding domain of oxysterol-binding protein (OSBP)-related protein 4 reveals a novel role in vimentin organization. Exp. Cell Res. 313, 1426–1437 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Infante, R.E. et al. Purified NPC1 protein. I. Binding of cholesterol and oxysterols to a 1278-amino acid membrane protein. J. Biol. Chem. 283, 1052–1063 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Radhakrishnan, A., Ikeda, Y., Kwon, H.J., Brown, M.S. & Goldstein, J.L. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc. Natl. Acad. Sci. USA 104, 6511–6518 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Infante, R.E. et al. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc. Natl. Acad. Sci. USA 105, 15287–15292 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Metherall, J.E., Goldstein, J.L., Luskey, K.L. & Brown, M.S. Loss of transcriptional repression of three sterol-regulated genes in mutant hamster cells. J. Biol. Chem. 264, 15634–15641 (1989).

    CAS  PubMed  Google Scholar 

  36. Wang, P.-Y., Weng, J., Lee, S. & Anderson, R.G.W. The N terminus controls sterol binding while the C terminus regulates the scaffolding function of OSBP. J. Biol. Chem. 283, 8034–8045 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Ridgway, N.D., Dawson, P.A., Ho, Y.K., Brown, M.S. & Goldstein, J.L. Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J. Cell Biol. 116, 307–319 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Nishimura, T. et al. Inhibition of cholesterol biosynthesis by 25-hydroxycholesterol is independent of OSBP. Genes Cells 10, 793–801 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. El Khissiin, A. & Leclercq, G. Implication of proteasome in estrogen receptor degradation. FEBS Lett. 448, 160–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Perry, R.J. & Ridgway, N.D. Oxysterol-binding protein and vesicle-associated membrane protein–associated protein are required for sterol-dependent activation of the ceramide transport protein. Mol. Biol. Cell 17, 2604–2616 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kawano, M., Kumagai, K., Nishijima, M. & Hanada, K. Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. J. Biol. Chem. 281, 30279–30288 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Peretti, D., Dahan, N., Shimoni, E., Hirschberg, K. & Lev, S. Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport. Mol. Biol. Cell 19, 3871–3884 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ridgway, N.D. 25-Hydroxycholesterol stimulates sphingomyelin synthesis in Chinese hamster ovary cells. J. Lipid Res. 36, 1345–1358 (1995).

    CAS  PubMed  Google Scholar 

  44. Collingwood, T.N. et al. A natural transactivation mutation in the thyroid hormone β receptor: Impaired interaction with putative transcriptional mediators. Proc. Natl. Acad. Sci. USA 94, 248–253 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Beh, C.T., Cool, L., Phillips, J. & Rine, J. Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics 157, 1117–1140 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Suchanek, M. et al. The mammalian oxysterol-binding protein-related proteins (ORPs) bind 25-hydroxycholesterol in an evolutionarily conserved pocket. Biochem. J. 405, 473–480 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Olkkonen, V.M. & Hynynen, R. Interactions of oxysterols with membranes and proteins. Mol. Aspects Med. 30, 123–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Zerbinatti, C.V. et al. Oxysterol-binding protein-1 (OSBP1) modulates processing and trafficking of the amyloid precursor protein. Mol. Neurodegener. 3, 5 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fournier, M.V. et al. Identification of a gene encoding a human oxysterol-binding protein-homologue: a potential general molecular marker for blood dissemination of solid tumors. Cancer Res. 59, 3748–3753 (1999), erratum 61, 792 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the NCI for the generous gifts of schweinfurthin A. (J.A. Beutler) and ritterazine B. We gratefully acknowledge the aforementioned reagents provided by G. Romeo (Joslin Diabetes Center), M. Brown and J. Goldstein (University of Texas Southwestern Medical Center), H. Arai (University of Tokyo), B. Vogelstein (Johns Hopkins University) and D. Ory (Washington University, St. Louis). The beta-tubulin monoclonal antibody (E7) developed by M. Klymkowsky was obtained from the Developmental Studies Hybridoma Bank (National Institute of Child Health and Human Development, US National Institutes of Health (NIH) and University of Iowa, Department of Biology). R. King is acknowledged for helpful comments and discussions. T.B.P. would like to thank the Lundbeck foundation for a post-doctoral fellowship and the Danish Council for Independent Research–Natural Sciences for additional financial support. A.W.G.B gratefully thanks the Susan G. Komen for the Cure Foundation for providing a postdoctoral research fellowship. Financial support from the Novartis Institutes of Biomedical Research, the US NIH (grant no. R01GM090068), the Harvard Catalyst and The Harvard Clinical and Translational Science Center (NIH award no. UL1RR025758) is acknowledged. This work was conducted with support and financial contributions from Harvard University and its affiliated academic health care centers.

Author information

Authors and Affiliations

Authors

Contributions

M.D.S., A.W.G.B., T.B.P., K.W. and D.R.A. conceived and designed the study. A.W.G.B., T.B.P., K.W. and D.R.A. implemented experiments. K.C.F. prepared cephalostatin 1. The OSBP and ORP4L molecular biology was done by K.W. and C.K. K.S. prepared OSW-1. S.O. performed early studies on p21 selectivity. Y.M. and M.K. supplied OSW-1 isolated from nature. A.W.G.B., D.R.A., M.S., J.P.M., E.C.P., D.J.S., I.C.-T. and J.A.T. performed the OSW-1 affinity chromatography experiments and subsequent quantitative mass spectrometry analysis. M.D.S., A.W.G.B., T.B.P. and K.W. wrote the paper.

Corresponding author

Correspondence to Matthew D Shair.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1238 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgett, A., Poulsen, T., Wangkanont, K. et al. Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat Chem Biol 7, 639–647 (2011). https://doi.org/10.1038/nchembio.625

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.625

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer