Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The second Phytophthora mating hormone defines interspecies biosynthetic crosstalk

Abstract

The heterothallic species of the agricultural pest Phytophthora use mating hormones α1 and α2 to regulate their sexual reproduction. Here we describe the absolute stereostructure of the second mating hormone α2 as defined by spectroscopic analysis and total synthesis. We have uncovered not only the interspecies universality of α hormones but also the pathway by which α2 is biosynthesized from phytol by A2–mating type strains and metabolized to α1 by A1 strains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Production and stereochemical determination of α2.
Figure 2: Biosynthetic pathway of α hormones.

Similar content being viewed by others

References

  1. Erwin, D.C. & Ribeiro, O.K. Phytophthora Diseases Worldwide (APS, St. Paul, Minnesota, USA, 1996).

  2. Fry, W.E. & Goodwin, S.B. Bioscience 47, 363–371 (1997).

    Article  Google Scholar 

  3. Judelson, H.S. & Blanco, F.A. Nat. Rev. Microbiol. 3, 47–58 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Fry, W. Mol. Plant Pathol. 9, 385–402 (2008).

    Article  PubMed  Google Scholar 

  5. Rizzo, D.M., Garbelotto, M., Davidson, J.M., Slaughter, G.W. & Koike, S.T. Plant Dis. 86, 205–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Savage, E.J. et al. Phytopathology 58, 1004–1021 (1968).

    Google Scholar 

  7. Ashby, S.F. Trans. Br. Mycol. Soc. 14, 18–38 (1929).

    Article  Google Scholar 

  8. Ko, W.H. J. Gen. Microbiol. 107, 15–18 (1978).

    Article  CAS  Google Scholar 

  9. Ko, W.H. Bot. Stud. (Taipei, Taiwan) 48, 365–375 (2007).

    CAS  Google Scholar 

  10. Chern, L.L., Tang, C.S. & Ko, W.H. Bot. Bull. Acad. Sin. 40, 79–85 (1999).

    CAS  Google Scholar 

  11. Chern, L.L., Ko, W.H. & Tang, C.S. Can. J. Microbiol. 42, 172–176 (1996).

    Article  CAS  Google Scholar 

  12. Ko, W.H. J. Gen. Microbiol. 129, 1397–1401 (1983).

    CAS  Google Scholar 

  13. Qi, J. et al. Science 309, 1828 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Yajima, A. et al. Nat. Chem. Biol. 4, 235–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Harutyunyan, S.R. et al. Proc. Natl. Acad. Sci. USA 105, 8507–8512 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, S.Y. Org. Lett. 12, 5166–5169 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Bajpai, R., Yang, F. & Curran, D.P. Tetrahedr. Lett. 48, 7965–7968 (2007).

    Article  CAS  Google Scholar 

  18. Yajima, A. et al. Tetrahedr. Lett. 48, 4601–4603 (2007).

    Article  CAS  Google Scholar 

  19. Ko, W.H. Annu. Rev. Phytopathol. 26, 57–73 (1988).

    Article  Google Scholar 

  20. Jee, H.J. & Ko, W.H. Mycol. Res. 101, 1140–1144 (1997).

    Article  CAS  Google Scholar 

  21. Jee, H.J., Tang, C.S. & Ko, W.H. Bot. Bull. Acad. Sin. 43, 203–210 (2002).

    CAS  Google Scholar 

  22. Peisker, C., Düggelin, T., Rentsch, D. & Matile, P. J. Plant Physiol. 135, 428–432 (1989).

    Article  CAS  Google Scholar 

  23. Tyler, B.M. et al. Science 313, 1261–1266 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Haas, B.J. et al. Nature 461, 393–398 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Shibata, Y., Kawakita, K. & Takemoto, D. Mol. Plant Microbe Interact. 23, 1130–1142 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Kawakita for P. infestans strains and W.H. Ko for valuable suggestions. This work was supported by Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science (22248012, 21710239 and 18380073). S.D.M. is a recipient of a Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) scholarship (080028).

Author information

Authors and Affiliations

Authors

Contributions

M.O. designed the project and wrote the manuscript; S.D.M. isolated 2, tested hormone response and prepared the manuscript; H.K. isolated 2; A.Y., K.T. and T.N. performed chemical syntheses; H.M. did isotope-labeled experiments; R.M. contributed to LC/MS analysis; T.A. contributed to bioassay; J.Q. isolated 1; and Y.S. designed the project.

Corresponding author

Correspondence to Makoto Ojika.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1449 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ojika, M., Molli, S., Kanazawa, H. et al. The second Phytophthora mating hormone defines interspecies biosynthetic crosstalk. Nat Chem Biol 7, 591–593 (2011). https://doi.org/10.1038/nchembio.617

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.617

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing