Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Serendipitous alkylation of a Plk1 ligand uncovers a new binding channel

Abstract

We obtained unanticipated synthetic byproducts from alkylation of the δ1 nitrogen (N3) of the histidine imidazole ring of the polo-like kinase-1 (Plk1) polo-box domain (PBD)-binding peptide PLHSpT. For the highest-affinity byproduct, bearing a C6H5(CH2)8– group, a Plk1 PBD cocrystal structure revealed a new binding channel that had previously been occluded. An N-terminal PEGylated version of this peptide containing a hydrolytically stable phosphothreonyl residue (pT) bound the Plk1 PBD with affinity equal to that of the non-PEGylated parent but showed markedly less interaction with the PBDs of the two closely related proteins Plk2 and Plk3. Treatment of cultured cells with this PEGylated peptide resulted in delocalization of Plk1 from centrosomes and kinetochores and in chromosome misalignment that effectively induced mitotic block and apoptotic cell death. This work provides insights that might advance efforts to develop Plk1 PBD-binding inhibitors as potential Plk1-specific anticancer agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray co-crystal structures of Plk1 PBD complexed with peptides 1 and 4j.
Figure 2: Specific inhibition of the function of Plk1 PBD by peptide 6.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Barr, F.A., Sillje, H.H.W. & Nigg, E.A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol. 5, 429–440 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Dai, W. Polo-like kinases, an introduction. Oncogene 24, 214–216 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Lowery, D.M., Lim, D. & Yaffe, M.B. Structure and function of polo-like kinases. Oncogene 24, 248–259 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. van de Weerdt, B.C.M. & Medema, R.H. Polo-like kinases: a team in control of the division. Cell Cycle 5, 853–864 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Archambault, V. & Glover, D.M. Polo-like kinases: conservation and divergence in their functions and regulation. Nat. Rev. Mol. Cell Biol. 10, 265–275 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Strebhardt, K. & Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nat. Rev. Cancer 6, 321–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Eckerdt, F., Yuan, J. & Strebhardt, K. Polo-like kinases and oncogenesis. Oncogene 24, 267–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Takai, N., Hamanaka, R., Yoshimatsu, J. & Miyakawa, I. Polo-like kinases (Plks) and cancer. Oncogene 24, 287–291 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Goh, K.C. et al. PLK1 as a potential drug target in cancer therapy. Drug Dev. Res. 62, 349–361 (2004).

    Article  CAS  Google Scholar 

  10. McInnes, C., Mezna, M. & Fischer, P.M. Progress in the discovery of polo-like kinase inhibitors. Curr. Top. Med. Chem. 5, 181–197 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Gumireddy, K. et al. ON01910, a non–ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 7, 275–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lansing, T.J. et al. In vitro biological activity of a novel small-molecule inhibitor of polo-like kinase 1. Mol. Cancer Ther. 6, 450–459 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Lénárt, P. et al. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr. Biol. 17, 304–315 (2007).

    Article  PubMed  Google Scholar 

  14. Lu, L.-Y. & Yu, X. The balance of Polo-like kinase 1 in tumorigenesis. Cell Div. 4, 4 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Reindl, W., Yuan, J., Kraemer, A., Strebhardt, K. & Berg, T.A. Pan-specific inhibitor of the polo-box domains of polo-like kinases arrests cancer cells in mitosis. ChemBioChem 10, 1145–1148 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Strebhardt, K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat. Rev. Drug Discov. 9, 643–660 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Burns, T.F., Fei, P., Scata, K.A., Dicker, D.T. & El-Deiry, W.S. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol. Cell. Biol. 23, 5556–5571 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie, S., Xie, B., Lee, M.Y. & Dai, W. Regulation of cell cycle checkpoints by polo-like kinases. Oncogene 24, 277–286 (2005).

    Article  PubMed  Google Scholar 

  19. Elia, A.E.H., Cantley, L.C. & Yaffe, M.B. Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299, 1228–1231 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Elia, A.E.H. et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the polo-box domain. Cell 115, 83–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Cheng, K.-Y., Lowe, E.D., Sinclair, J., Nigg, E.A. & Johnson, L.N. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J. 22, 5757–5768 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reindl, W., Yuan, J., Kraemer, A., Strebhardt, K. & Berg, T. Inhibition of Polo-like kinase 1 by blocking Polo-box domain-dependent protein-protein interactions. Chem. Biol. 15, 459–466 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Yun, S.-M. et al. Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1. Nat. Struct. Mol. Biol. 16, 876–882 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Watanabe, N. et al. Deficiency in chromosome congression by the inhibition of Plk1 Polo box domain-dependent recognition. J. Biol. Chem. 284, 2344–2353 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Jang, Y.-J., Lin, C.-Y., Ma, S. & Erikson, R.L. Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. Proc. Natl. Acad. Sci. USA 99, 1984–1989 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, K.S., Grenfell, T.Z., Yarm, F.R. & Erikson, R.L. Mutation of the polo-box disrupts localization and mitotic functions of the mammalian polo kinase Plk. Proc. Natl. Acad. Sci. USA 95, 9301–9306 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Seong, Y.-S. et al. A spindle checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box domain of Plk1 in U-2 OS cells. J. Biol. Chem. 277, 32282–32293 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Wipf, P. et al. A case study from the chemistry core of the Pittsburgh molecular library screening center: the polo-like kinase polo-box domain (Plk1-PBD). Curr. Top. Med. Chem. 9, 1194–1205 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Li, L. et al. The natural product Aristolactam AIIIa as a new ligand targeting the polo-box domain of polo-like kinase 1 potently inhibits cancer cell proliferation. Acta Pharmacol. Sin. 30, 1443–1453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. García-Alvarez, B., de, C.G., Ibanez, S., Bragado-Nilsson, E. & Montoya, G. Molecular and structural basis of polo-like kinase 1 substrate recognition: implications in centrosomal localization. Proc. Natl. Acad. Sci. USA 104, 3107–3112 (2007).

    Article  PubMed  Google Scholar 

  31. Huggins, D.J. et al. Computational analysis of phosphopeptide binding to the polo-box domain of the mitotic kinase PLK1 using molecular dynamics simulation. PLOS Comput. Biol. 6, e1000880 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu, F., Park, J.-E., Lee, K.S. & Burke, T.R. Jr. Preparation of orthogonally protected (2S,3R)-2-amino-3-methyl-4-phosphonobutyric acid (Pmab) as a phosphatase-stable phosphothreonine mimetic and its use in the synthesis of polo-box domain-binding peptides. Tetrahedron 65, 9673–9679 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Swamy, K.C.K., Kumar, N.N.B., Balaraman, E. & Kumar, K.V.P.P. Mitsunobu and related reactions: advances and applications. Chem. Rev. 109, 2551–2651 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. McGovern, S.L. Promiscuous ligands. Compr. Med. Chem. II 2, 737–752 (2006).

    CAS  Google Scholar 

  35. Coan, K.E.D., Maltby, D.A., Burlingame, A.L. & Shoichet, B.K. Promiscuous aggregate-based inhibitors promote enzyme unfolding. J. Med. Chem. 52, 2067–2075 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bhadra, D., Bhadra, S., Jain, P. & Jain, N.K. Pegnology: a review of PEG-ylated systems. Pharmazie 57, 5–29 (2002).

    CAS  PubMed  Google Scholar 

  37. Roberts, M.J., Bentley, M.D. & Harris, J.M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 54, 459–476 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Pisal, D.S., Kosloski, M.P. & Balu-Iyer, S.V. Delivery of therapeutic proteins. J. Pharm. Sci. 99, 2557–2575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsuchida, E. et al. Artificial oxygen carriers, hemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry. Bioconjug. Chem. 20, 1419–1440 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Miller, M.A. et al. Amphiphilic conjugates of human brain natriuretic peptide designed for oral delivery: in vitro activity screening. Bioconjug. Chem. 17, 267–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Khedkar, A. et al. A dose range finding study of novel oral insulin (IN-105) under fed conditions in type 2 diabetes mellitus subjects. Diabetes Obes. Metab. 12, 659–664 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Bellouard, F., Chuburu, F., Yaouanc, J.-J., Handel, H. & Le Mest, Y. A convenient synthetic route to polyether-tagged cyclam ligands and their nickel derivatives. Eur. J. Org. Chem. 1999, 3257–3261 (1999).

    Article  Google Scholar 

  43. Kanda, Y., Ashizawa, T., Kawashima, K., Ikeda, S.-i. & Tamaoki, T. Synthesis and antitumor activity of novel C-8 ester derivatives of leinamycin. Bioorg. Med. Chem. Lett. 13, 455–458 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Ahonen, L.J. et al. Polo-like kinase 1 creates the tension-sensing 3F3/2 phosphoepitope and modulates the association of spindle-checkpoint proteins at kinetochores. Curr. Biol. 15, 1078–1089 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Śledź, P. et al. From crystal packing to molecular recognition: Prediction and discovery of a binding site on the surface of polo-like kinase 1. Agnew Chem. Int. Ed. Engl. 50, 4003–4006 (2011).

    Article  Google Scholar 

  46. Liu, X. & Erikson, R.L. Polo-like kinase 1 in the life and death of cancer cells. Cell Cycle 2, 424–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Luo, J. et al. A Genome-wide RNAi screen identifies multiple synthetic lethal interactions with the ras oncogene. Cell 137, 835–848 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sur, S. et al. A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc. Natl. Acad. Sci. USA 106, 3964–3969 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Kang, Y.H. et al. Self-regulated Plk1 recruitment to kinetochores by the Plk1-PBIP1 interaction is critical for proper chromosome regulation. Mol. Cell. 24, 409–422 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants ZIA BC 006198 (T.R.B.) and ZIA BC 010681 (K.S.L.) of the Intramural Research Program of the US National Institutes of Health, Center for Cancer Research, National Cancer Institute–Frederick and the US National Cancer Institute, US National Institutes of Health (F.L., J.-E.P., W.-J.Q., K.S.L. and T.R.B.), US National Institutes of Health grants GM60594, GM68762 and CA112967 (M.B.Y.) and the Deutsche Forschungsgemeinschaft (grant BE 4572/1-1) (T.B.). We thank M. Dyba of the Biophysics Resource of the Structural Biophysics Laboratory, National Cancer Institute Frederick for assistance in performing tandem MS studies and W. Dai, New York University School of Medicine for the Flag-Plk3 construct. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial product or organizations imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Contributions

F.L., J.-E.P., W.-J.Q., D.L., M.G., T.B., M.B.Y., K.S.L. and T.R.B. designed the experiments; F.L., J.-E.P., W.-J.Q., D.L. and M.G. conducted the experiments and F.L., J.-E.P., W.-J.Q., D.L., M.G., T.B., M.B.Y., K.S.L. and T.R.B. analyzed the data and wrote the paper.

Corresponding authors

Correspondence to Kyung S Lee or Terrence R Burke Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 17027 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Park, JE., Qian, WJ. et al. Serendipitous alkylation of a Plk1 ligand uncovers a new binding channel. Nat Chem Biol 7, 595–601 (2011). https://doi.org/10.1038/nchembio.614

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.614

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer