Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reveromycin A biosynthesis uses RevG and RevJ for stereospecific spiroacetal formation

Abstract

Spiroacetal compounds are ubiquitous in nature, and their stereospecific structures are responsible for diverse pharmaceutical activities. Elucidation of the biosynthetic mechanisms that are involved in spiroacetal formation will open the door to efficient generation of stereospecific structures that are otherwise hard to synthesize chemically. However, the biosynthesis of these compounds is poorly understood, owing to difficulties in identifying the responsible enzymes and analyzing unstable intermediates. Here we comprehensively describe the spiroacetal formation involved in the biosynthesis of reveromycin A, which inhibits bone resorption and bone metastases of tumor cells by inducing apoptosis in osteoclasts. We performed gene disruption, systematic metabolite analysis, feeding of labeled precursors and conversion studies with recombinant enzymes. We identified two key enzymes, dihydroxy ketone synthase and spiroacetal synthase, and showed in vitro reconstruction of the stereospecific spiroacetal structure from a stable acyclic precursor. Our findings provide insights into the creation of a variety of biologically active spiroacetal compounds for drug leads.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural products containing a spiroacetal structure.
Figure 2: Deciphering of RM-PKS.
Figure 3: Post-PKS biosynthetic intermediate and mode of spiroacetal formation.
Figure 4: Analyses of enzyme reaction products.
Figure 5: Proposed biosynthetic pathway of 1. Brackets indicate the proposed dihydroxy ketone precursor (17) and the scheme for spiroacetal formation.

Similar content being viewed by others

References

  1. Weissman, K.J. & Leadlay, P.F. Combinatorial biosynthesis of reduced polyketides. Nat. Rev. Microbiol. 3, 925–936 (2005).

    Article  CAS  Google Scholar 

  2. Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Edn Engl. 48, 4688–4716 (2009).

    Article  CAS  Google Scholar 

  3. Agtarap, A., Chamberlin, J.W., Pinkerton, M. & Steinrauf, L. The structure of monensic acid, a new biologically active compound. J. Am. Chem. Soc. 89, 5737–5739 (1967).

    Article  CAS  Google Scholar 

  4. MacKintosh, C. & Klumpp, S. Tautomycin from the bacterium Streptomyces verticillatus. Another potent and specific inhibitor of protein phosphatases 1 and 2A. FEBS Lett. 277, 137–140 (1990).

    Article  CAS  Google Scholar 

  5. Ishihara, H. et al. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem. Biophys. Res. Commun. 159, 871–877 (1989).

    Article  CAS  Google Scholar 

  6. Bialojan, C. & Takai, A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem. J. 256, 283–290 (1988).

    Article  CAS  Google Scholar 

  7. Burg, R.W. et al. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob. Agents Chemother. 15, 361–367 (1979).

    Article  CAS  Google Scholar 

  8. Niggemann, J. et al. Spirangien A and B, highly cytotoxic and antifungal spiroketals from the myxobacterium Sorangium cellulosum: isolation, structure elucidation and chemical modifications. Eur. J. Org. Chem. 2005, 5013–5018 (2005).

    Article  Google Scholar 

  9. Osada, H., Koshino, H., Isono, K., Takahashi, H. & Kawanishi, G. Reveromycin A, a new antibiotic which inhibits the mitogenic activity of epidermal growth factor. J. Antibiot. (Tokyo) 44, 259–261 (1991).

    Article  CAS  Google Scholar 

  10. Takahashi, H. et al. Reveromycins, new inhibitors of eukaryotic cell growth. II. Biological activities. J. Antibiot. (Tokyo) 45, 1414–1419 (1992).

    Article  CAS  Google Scholar 

  11. Cui, Z., Hirata, D., Tsuchiya, E., Osada, H. & Miyakawa, T. The multidrug resistance-associated protein (MRP) subfamily (Yrs1/Yor1) of Saccharomyces cerevisiae is important for the tolerance to a broad range of organic anions. J. Biol. Chem. 271, 14712–14716 (1996).

    Article  CAS  Google Scholar 

  12. Takahashi, H. et al. Inhibitory action of reveromycin A on TGF-α-dependent growth of ovarian carcinoma BG-1 in vitro and in vivo. Oncol. Res. 9, 7–11 (1997).

    CAS  PubMed  Google Scholar 

  13. Miyamoto, Y. et al. Identification of Saccharomyces cerevisiae isoleucyl-tRNA synthetase as a target of the G1-specific inhibitor Reveromycin A. J. Biol. Chem. 277, 28810–28814 (2002).

    Article  CAS  Google Scholar 

  14. Tanaka, Y. et al. Reveromycin A inhibits antigen receptor-mediated antigen presentation by B lymphoma cells via its effect on intracellular trafficking of the antigen. J. Antibiot. (Tokyo) 55, 904–913 (2002).

    Article  CAS  Google Scholar 

  15. Woo, J.T. et al. Reveromycin A, an agent for osteoporosis, inhibits bone resorption by inducing apoptosis specifically in osteoclasts. Proc. Natl. Acad. Sci. USA 103, 4729–4734 (2006).

    Article  CAS  Google Scholar 

  16. Muguruma, H. et al. Reveromycin A inhibits osteolytic bone metastasis of small-cell lung cancer cells, SBC-5, through an antiosteoclastic activity. Clin. Cancer Res. 11, 8822–8828 (2005).

    Article  CAS  Google Scholar 

  17. Yano, A. et al. Inhibition of Hsp90 activates osteoclast c-Src signaling and promotes growth of prostate carcinoma cells in bone. Proc. Natl. Acad. Sci. USA 105, 15541–15546 (2008).

    Article  CAS  Google Scholar 

  18. Shimizu, T., Masuda, T., Hiramoto, K. & Nakata, T. Total synthesis of reveromycin A. Org. Lett. 2, 2153–2156 (2000).

    Article  CAS  Google Scholar 

  19. Paterson, I., Findlay, A.D. & Noti, C. Total synthesis of (–)-spirangien A, an antimitotic polyketide isolated from the myxobacterium Sorangium cellulosum. Chem. Asian J. 4, 594–611 (2009).

    Article  CAS  Google Scholar 

  20. Sheppeck, J.E. II, Liu, W. & Chamberlin, A.R. Total synthesis of the serine/threonine-specific protein phosphatase inhibitor tautomycin (1). J. Org. Chem. 62, 387–398 (1997).

    Article  CAS  Google Scholar 

  21. Oliynyk, M. et al. Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization. Mol. Microbiol. 49, 1179–1190 (2003).

    Article  CAS  Google Scholar 

  22. Bhatt, A. et al. Accumulation of an E,E,E-triene by the monensin-producing polyketide synthase when oxidative cyclization is blocked. Angew. Chem. Int. Edn. Engl. 44, 7075–7078 (2005).

    Article  CAS  Google Scholar 

  23. Gallimore, A.R. et al. Evidence for the role of the monB genes in polyether ring formation during monensin biosynthesis. Chem. Biol. 13, 453–460 (2006).

    Article  CAS  Google Scholar 

  24. Li, W., Ju, J., Rajski, S.R., Osada, H. & Shen, B. Characterization of the tautomycin biosynthetic gene cluster from Streptomyces spiroverticillatus unveiling new insights into dialkylmaleic anhydride and polyketide biosynthesis. J. Biol. Chem. 283, 28607–28617 (2008).

    Article  CAS  Google Scholar 

  25. Ikeda, H., Nonomiya, T., Usami, M., Ohta, T. & Omura, S. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc. Natl. Acad. Sci. USA 96, 9509–9514 (1999).

    Article  CAS  Google Scholar 

  26. Frank, B. et al. Spiroketal polyketide formation in Sorangium: identification and analysis of the biosynthetic gene cluster for the highly cytotoxic spirangienes. Chem. Biol. 14, 221–233 (2007).

    Article  CAS  Google Scholar 

  27. Ishikawa, J. & Hotta, K. FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiol. Lett. 174, 251–253 (1999).

    Article  CAS  Google Scholar 

  28. Staunton, J. & Weissman, K.J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).

    Article  CAS  Google Scholar 

  29. Bevitt, D.J., Cortes, J., Haydock, S.F. & Leadlay, P.F. 6-Deoxyerythronolide-B synthase 2 from Saccharopolyspora erythraea. Cloning of the structural gene, sequence analysis and inferred domain structure of the multifunctional enzyme. Eur. J. Biochem. 204, 39–49 (1992).

    Article  CAS  Google Scholar 

  30. Donadio, S. & Katz, L. Organization of the enzymatic domains in the multifunctional polyketide synthase involved in erythromycin formation in Saccharopolyspora erythraea. Gene 111, 51–60 (1992).

    Article  CAS  Google Scholar 

  31. Bisang, C. et al. A chain initiation factor common to both modular and aromatic polyketide synthases. Nature 401, 502–505 (1999).

    Article  CAS  Google Scholar 

  32. Haydock, S.F. et al. Divergent sequence motifs correlated with the substrate specificity of (methyl)malonyl-CoA:acyl carrier protein transacylase domains in modular polyketide synthases. FEBS Lett. 374, 246–248 (1995).

    Article  CAS  Google Scholar 

  33. Aparicio, J.F. et al. Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of the enzymatic domains in the modular polyketide synthase. Gene 169, 9–16 (1996).

    Article  CAS  Google Scholar 

  34. Keatinge-Clay, A.T. & Stroud, R.M. The structure of a ketoreductase determines the organization of the beta-carbon processing enzymes of modular polyketide synthases. Structure 14, 737–748 (2006).

    Article  CAS  Google Scholar 

  35. Reid, R. et al. A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. Biochemistry 42, 72–79 (2003).

    Article  CAS  Google Scholar 

  36. Caffrey, P. Conserved amino acid residues correlating with ketoreductase stereospecificity in modular polyketide synthases. ChemBioChem 4, 654–657 (2003).

    Article  CAS  Google Scholar 

  37. Keatinge-Clay, A. Crystal structure of the erythromycin polyketide synthase dehydratase. J. Mol. Biol. 384, 941–953 (2008).

    Article  CAS  Google Scholar 

  38. Kwan, D.H. et al. Prediction and manipulation of the stereochemistry of enoylreduction in modular polyketide synthases. Chem. Biol. 15, 1231–1240 (2008).

    Article  CAS  Google Scholar 

  39. Witkowski, A., Naggert, J., Wessa, B. & Smith, S. A catalytic role for histidine 237 in rat mammary gland thioesterase II. J. Biol. Chem. 266, 18514–18519 (1991).

    CAS  PubMed  Google Scholar 

  40. Benach, J. et al. Structure of bacterial 3β/17β-hydroxysteroid dehydrogenase at 1.2 A resolution: a model for multiple steroid recognition. Biochemistry 41, 14659–14668 (2002).

    Article  CAS  Google Scholar 

  41. Shafqat, N. et al. Expanded substrate screenings of human and Drosophila type 10 17β-hydroxysteroid dehydrogenases (HSDs) reveal multiple specificities in bile acid and steroid hormone metabolism: characterization of multifunctional 3α/7α/7β/17β/20β/21-HSD. Biochem. J. 376, 49–60 (2003).

    Article  CAS  Google Scholar 

  42. Shimizu, T., Satoh, T., Murakoshi, K. & Sodeoka, M. Asymmetric total synthesis of (−)-spirofungin A and (+)-spirofungin B. Org. Lett. 7, 5573–5576 (2005).

    Article  CAS  Google Scholar 

  43. Höltzel, A. et al. Spirofungin, a new antifungal antibiotic from Streptomyces violaceusniger Tu 4113. J. Antibiot. (Tokyo) 51, 699–707 (1998).

    Article  Google Scholar 

  44. Persson, B. et al. The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chem. Biol. Interact. 178, 94–98 (2009).

    Article  CAS  Google Scholar 

  45. Mayerhofer, L.E., Conway de Macario, E., Yao, R. & Macario, A.J. Structure, organization, and expression of genes coding for envelope components in the archaeon Methanosarcina mazei S-6. Arch. Microbiol. 169, 339–345 (1998).

    Article  CAS  Google Scholar 

  46. Jing, H. et al. Archaeal surface layer proteins contain beta propeller, PKD, and beta helix domains and are related to metazoan cell surface proteins. Structure 10, 1453–1464 (2002).

    Article  CAS  Google Scholar 

  47. Koshino, H., Takahashi, H., Osada, H. & Isono, K. Reveromycins, new inhibitors of eukaryotic cell growth. III. Structures of reveromycins A, B, C and D. J. Antibiot. (Tokyo) 45, 1420–1427 (1992).

    Article  CAS  Google Scholar 

  48. Ubukata, M., Koshino, H., Osada, H. & Isono, K. Absolute configuration of reveromycin A, an inhibitor of the signal transduction of epidermal growth factor. J. Chem. Soc. Chem. Commun. 1994, 1877–1878 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Shimizu for discussions on spiroacetal formation; K. Wierzba for reading this paper; T. Nakamura for mass analysis; N. Dohmae for MALDI-TOF and N-terminal sequencing; and E. Oowada for technical assistance. We thank all the technical staff of the Sequence Technology Team at RIKEN Genomic Sciences Center for their assistance. This work was supported in part by the Naito Foundation, the Strategic Programs for R&D of RIKEN, a Grant-in-Aid for Creative Scientific Research and a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

S.T.: the identification of RM gene cluster, genetic analysis, enzyme characterization and writing of the paper; A.T. and Y. Sakaki: sequencing of Streptomyces sp. SN-593 genome; Y. Sekiyama: the 13C-labeling experiments; H.T. and R.S.: the isolation of RM derivatives; T.N., M.U. and H.K.: the structural analyses; T.N. and M.U: the writing of structural analysis; S.P.: the analysis of the border genes; T.K.: the characterization of RevJ; T.D.: the RT-PCR analysis; J.I.: the development of the gene annotation system; H.I.: discussion about the gene transformation system for Streptomyces sp. SN-593; H.O.: the integration of all research. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hiroyuki Osada.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 12412 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, S., Toyoda, A., Sekiyama, Y. et al. Reveromycin A biosynthesis uses RevG and RevJ for stereospecific spiroacetal formation. Nat Chem Biol 7, 461–468 (2011). https://doi.org/10.1038/nchembio.583

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.583

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing