Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Click-generated triazole ureas as ultrapotent in vivo–active serine hydrolase inhibitors

A Corrigendum to this article was published on 15 February 2012

This article has been updated

Abstract

Serine hydrolases are a diverse enzyme class representing 1% of all human proteins. The biological functions of most serine hydrolases remain poorly characterized owing to a lack of selective inhibitors to probe their activity in living systems. Here we show that a substantial number of serine hydrolases can be irreversibly inactivated by 1,2,3-triazole ureas, which show negligible cross-reactivity with other protein classes. Rapid lead optimization by click chemistry–enabled synthesis and competitive activity-based profiling identified 1,2,3-triazole ureas that selectively inhibit enzymes from diverse branches of the serine hydrolase class, including peptidases (acyl-peptide hydrolase, or APEH), lipases (platelet-activating factor acetylhydrolase-2, or PAFAH2) and uncharacterized hydrolases (α,β-hydrolase-11, or ABHD11), with exceptional potency in cells (sub-nanomolar) and mice (<1 mg kg−1). We show that APEH inhibition leads to accumulation of N-acetylated proteins and promotes proliferation in T cells. These data indicate 1,2,3-triazole ureas are a pharmacologically privileged chemotype for serine hydrolase inhibition, combining broad activity across the serine hydrolase class with tunable selectivity for individual enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Competitive ABPP with clickable NHU activity–based probes AA6 to AA10.
Figure 2: Comparative ABPP of piperidine-based carbamate (AA38-3) and triazole urea (AA26-9) inhibitors.
Figure 3: Rapid optimization of triazole urea inhibitors by click chemistry–enabled synthesis and competitive ABPP.
Figure 4: In vitro and in situ characterization of triazole urea inhibitors AA74-1, AA39-2 and AA44-2 in mouse T cells.
Figure 5: Characterization of the activity and selectivity of APEH inhibitor AA74-1 in vivo.
Figure 6: Proteomic characterization of endogenous APEH substrates using N-terminal labeling and enrichment.

Similar content being viewed by others

Change history

  • 15 February 2012

    In the version of this article initially published, the authors concluded, on the basis of the substantial (approximately five-fold) N1 regioselectivity observed for reactions that form the unsubstituted triazole ureas shown in Figures 1–3, that the major regioisomeric product for the 4-substituted triazole ureas shown in Figures 1 and 3 was also the N1 regioisomer. They have since determined by X-ray crystallography (provided as Supplementary Data Sets 1 and 2) that the N2 regioisomer is the major product for the 4-substituted triazole ureas. The structures have been corrected in the HTML and PDF versions of the article and in the chemical probe table associated with the article.

References

  1. Simon, G.M. & Cravatt, B.F. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J. Biol. Chem. 285, 11051–11055 (2010).

    Article  CAS  Google Scholar 

  2. Henness, S. & Perry, C.M. Orlistat: a review of its use in the management of obesity. Drugs 66, 1625–1656 (2006).

    Article  CAS  Google Scholar 

  3. Thornberry, N.A. & Weber, A.E. Discovery of JANUVIA (Sitagliptin), a selective dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Curr. Top. Med. Chem. 7, 557–568 (2007).

    Article  CAS  Google Scholar 

  4. Kluge, A.F. & Petter, R.C. Acylating drugs: redesigning natural covalent inhibitors. Curr. Opin. Chem. Biol. 14, 421–427 (2010).

    Article  CAS  Google Scholar 

  5. Racchi, M., Mazzucchelli, M., Porrello, E., Lanni, C. & Govoni, S. Acetylcholinesterase inhibitors: novel activities of old molecules. Pharmacol. Res. 50, 441–451 (2004).

    Article  CAS  Google Scholar 

  6. Bachovchin, D.A. et al. A superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening. Proc. Natl. Acad. Sci. USA 107, 20941–20946 (2010).

    Article  CAS  Google Scholar 

  7. Jessani, N. et al. A streamlined platform for high-content functional proteomics of primary human specimens. Nat. Methods 2, 691–697 (2005).

    Article  CAS  Google Scholar 

  8. Okerberg, E.S. et al. High-resolution functional proteomics by active-site peptide profiling. Proc. Natl. Acad. Sci. USA 102, 4996–5001 (2005).

    Article  CAS  Google Scholar 

  9. Alexander, J.P. & Cravatt, B.F. Mechanism of carbamate inactivation of FAAH: implications for the design of covalent inhibitors and in vivo functional probes for enzymes. Chem. Biol. 12, 1179–1187 (2005).

    Article  CAS  Google Scholar 

  10. Liu, Y., Patricelli, M.P. & Cravatt, B.F. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96, 14694–14699 (1999).

    Article  CAS  Google Scholar 

  11. Patricelli, M.P., Giang, D.K., Stamp, L.M. & Burbaum, J.J. Direct visualization of serine hydrolase activities in complex proteome using fluorescent active site-directed probes. Proteomics 1, 1067–1071 (2001).

    Article  CAS  Google Scholar 

  12. Kathuria, S. et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat. Med. 9, 76–81 (2003).

    Article  CAS  Google Scholar 

  13. Long, J.Z. et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat. Chem. Biol. 5, 37–44 (2009).

    Article  CAS  Google Scholar 

  14. Chiang, K.P., Niessen, S., Saghatelian, A. & Cravatt, B.F. An enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling. Chem. Biol. 13, 1041–1050 (2006).

    Article  CAS  Google Scholar 

  15. Birks, J., Grimley Evans, J., Iakovidou, V., Tsolaki, M. & Holt, F.E. Rivastigmine for Alzheimer's disease. Cochrane Database Syst. Rev. CD001191 (2009).

  16. Moore, S.A. et al. Identification of a high-affinity binding site involved in the transport of endocannabinoids. Proc. Natl. Acad. Sci. USA 102, 17852–17857 (2005).

    Article  CAS  Google Scholar 

  17. Alexander, J.P. & Cravatt, B.F. The putative endocannabinoid transport blocker LY2183240 is a potent inhibitor of FAAH and several other brain serine hydrolases. J. Am. Chem. Soc. 128, 9699–9704 (2006).

    Article  CAS  Google Scholar 

  18. Lowe, D.B. et al. In vitro SAR of (5-(2H)-isoxazolonyl) ureas, potent inhibitors of hormone-sensitive lipase. Bioorg. Med. Chem. Lett. 14, 3155–3159 (2004).

    Article  CAS  Google Scholar 

  19. Ebdrup, S., Sorensen, L.G., Olsen, O.H. & Jacobsen, P. Synthesis and structure-activity relationship for a novel class of potent and selective carbamoyl-triazole based inhibitors of hormone sensitive lipase. J. Med. Chem. 47, 400–410 (2004).

    Article  CAS  Google Scholar 

  20. Speers, A.E. & Cravatt, B.F. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 11, 535–546 (2004).

    Article  CAS  Google Scholar 

  21. Long, J.Z. et al. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc. Natl. Acad. Sci. USA 106, 20270–20275 (2009).

    Article  CAS  Google Scholar 

  22. Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol. 7, 952–958 (2006).

    Article  CAS  Google Scholar 

  23. Everley, P.A. et al. Assessing enzyme activities using stable isotope labeling and mass spectrometry. Mol. Cell. Proteomics 6, 1771–1777 (2007).

    Article  CAS  Google Scholar 

  24. Ong, S.E. et al. Identifying the proteins to which small-molecule probes and drugs bind in cells. Proc. Natl. Acad. Sci. USA 106, 4617–4622 (2009).

    Article  CAS  Google Scholar 

  25. Wu, C.C., MacCoss, M.J., Howell, K.E., Matthews, D.E. & Yates, J.R. III. Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal. Chem. 76, 4951–4959 (2004).

    Article  CAS  Google Scholar 

  26. Perrier, J., Durand, A., Giardina, T. & Puigserver, A. Catabolism of intracellular N-terminal acetylated proteins: involvement of acylpeptide hydrolase and acylase. Biochimie 87, 673–685 (2005).

    Article  CAS  Google Scholar 

  27. Timmer, J.C. et al. Profiling constitutive proteolytic events in vivo. Biochem. J. 407, 41–48 (2007).

    Article  CAS  Google Scholar 

  28. Orre, L.M., Pernemalm, M., Lengqvist, J., Lewensohn, R. & Lehtio, J. Up-regulation, modification, and translocation of S100A6 induced by exposure to ionizing radiation revealed by proteomics profiling. Mol. Cell. Proteomics 6, 2122–2131 (2007).

    Article  CAS  Google Scholar 

  29. Helbig, A.O. et al. Profiling of N-acetylated protein termini provides in-depth insights into the N-terminal nature of the proteome. Mol. Cell. Proteomics 9, 928–939 (2010).

    Article  CAS  Google Scholar 

  30. Cravatt, B.F., Wright, A.T. & Kozarich, J.W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    Article  CAS  Google Scholar 

  31. Berger, A.B., Vitorino, P.M. & Bogyo, M. Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery. Am. J. Pharmacogenomics 4, 371–381 (2004).

    Article  CAS  Google Scholar 

  32. Jessani, N., Liu, Y., Humphrey, M. & Cravatt, B.F. Enzyme activity profiles of the secreted and membrane proteome that depict cancer invasiveness. Proc. Natl. Acad. Sci. USA 99, 10335–10340 (2002).

    Article  CAS  Google Scholar 

  33. Joyce, J.A. et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453 (2004).

    Article  CAS  Google Scholar 

  34. Nomura, D.K. et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140, 49–61 (2010).

    Article  CAS  Google Scholar 

  35. Barglow, K.T. & Cravatt, B.F. Discovering disease-associated enzymes by proteome reactivity profiling. Chem. Biol. 11, 1523–1531 (2004).

    Article  CAS  Google Scholar 

  36. Greenbaum, D.C. et al. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science 298, 2002–2006 (2002).

    Article  CAS  Google Scholar 

  37. Blais, D.R. et al. Activity-based protein profiling identifies a host enzyme, carboxylesterase 1, which is differentially active during hepatitis C virus replication. J. Biol. Chem. 285, 25602–25612 (2010).

    Article  CAS  Google Scholar 

  38. Kaschani, F. et al. Diversity of serine hydrolase activities of unchallenged and botrytis-infected Arabidopsis thaliana. Mol. Cell. Proteomics 8, 1082–1093 (2009).

    Article  CAS  Google Scholar 

  39. Kidd, D., Liu, Y. & Cravatt, B.F. Profiling serine hydrolase activities in complex proteomes. Biochemistry 40, 4005–4015 (2001).

    Article  CAS  Google Scholar 

  40. Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics 1, 60–68 (2002).

    Article  CAS  Google Scholar 

  41. Jessani, N. et al. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc. Natl. Acad. Sci. USA 101, 13756–13761 (2004).

    Article  CAS  Google Scholar 

  42. Mazzucchelli, L. Protein S100A4: too long overlooked by pathologists? Am. J. Pathol. 160, 7–13 (2002).

    Article  CAS  Google Scholar 

  43. Erlandsson, R. et al. The gene from the short arm of chromosome 3, at D3F15S2, frequently deleted in renal cell carcinoma, encodes acylpeptide hydrolase. Oncogene 6, 1293–1295 (1991).

    CAS  PubMed  Google Scholar 

  44. Scaloni, A. et al. Deficiency of acylpeptide hydrolase in small-cell lung carcinoma cell lines. J. Lab. Clin. Med. 120, 546–552 (1992).

    CAS  PubMed  Google Scholar 

  45. Kono, N. et al. Protection against oxidative stress-induced hepatic injury by intracellular type II platelet-activating factor acetylhydrolase by metabolism of oxidized phospholipids in vivo. J. Biol. Chem. 283, 1628–1636 (2008).

    Article  CAS  Google Scholar 

  46. Schubert, C. The genomic basis of the Williams-Beuren syndrome. Cell. Mol. Life Sci. 66, 1178–1197 (2009).

    Article  CAS  Google Scholar 

  47. Robertson, J.G. Mechanistic basis of enzyme-targeted drugs. Biochemistry 44, 5561–5571 (2005).

    Article  CAS  Google Scholar 

  48. Kodadek, T. Rethinking screening. Nat. Chem. Biol. 6, 162–165 (2010).

    Article  CAS  Google Scholar 

  49. Johnson, D.S., Weerapana, E. & Cravatt, B.F. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med Chem 2, 949–964 (2010).

    Article  CAS  Google Scholar 

  50. Cohen, M.S., Hadjivassiliou, H. & Taunton, J. A clickable inhibitor reveals context-dependent autoactivation of p90 RSK. Nat. Chem. Biol. 3, 156–160 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Savas and D. McClatchy (The Scripps Research Institute) for generously providing 15N-labeled mice and T. Ji for technical assistance. This work was supported by the US National Institutes of Health (DA028845, CA151460 (K99 award to B.R.M.)), the Deutscher Akademischer Austausch Dienst (postdoctoral fellowship to A.A.), the US National Science Foundation (predoctoral fellowship to D.A.B.) and the Skaggs Institute for Chemical Biology.

Author information

Authors and Affiliations

Authors

Contributions

A.A. B.R.M. and B.F.C. designed the experiments; A.A., B.R.M. and K.-L.H. performed the experiments; A.A., D.A.B., S.N. and H.H. contributed new reagents and analytic tools; A.A., C.W. and B.F.C. analyzed data; and A.A. and B.F.C. wrote the manuscript.

Corresponding author

Correspondence to Benjamin F Cravatt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1915 kb)

Supplementary Table 1

Supplementary Table 1 (XLS 1249 kb)

Supplementary Data Set 1

Crystal structure data for compound AA80-1 (CIF 18 kb)

Supplementary Data Set 2

Crystal structure data for compound KT117 (CIF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adibekian, A., Martin, B., Wang, C. et al. Click-generated triazole ureas as ultrapotent in vivo–active serine hydrolase inhibitors. Nat Chem Biol 7, 469–478 (2011). https://doi.org/10.1038/nchembio.579

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.579

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research