Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

Abstract

The structure of ent-copalyl diphosphate synthase reveals three α-helical domains (α, β and γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in ent-copalyl diphosphate synthase but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ent-Copalyl diphosphate synthase (CPS).
Figure 2: Binding of substrate analog 1 in the active site of CPS.
Figure 3: Initiation of the class II diterpene synthase reaction by general acid catalysis.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Tholl, D. Curr. Opin. Plant Biol. 9, 297–304 (2006).

    Article  CAS  Google Scholar 

  2. Gershenzon, J. & Dudareva, N. Nat. Chem. Biol. 3, 408–414 (2007).

    Article  CAS  Google Scholar 

  3. Bohlmann, J. & Keeling, C.I. Plant J. 54, 656–669 (2008).

    Article  CAS  Google Scholar 

  4. Wendt, K.U. & Schulz, G.E. Structure 6, 127–133 (1998).

    Article  CAS  Google Scholar 

  5. Wendt, K.U., Schulz, G.E., Corey, E.J. & Liu, D.R. Angew. Chem. Int. Ed. 39, 2812–2833 (2000).

    Article  CAS  Google Scholar 

  6. Christianson, D.W. Chem. Rev. 106, 3412–3442 (2006).

    Article  CAS  Google Scholar 

  7. Christianson, D.W. Curr. Opin. Chem. Biol. 12, 141–150 (2008).

    Article  CAS  Google Scholar 

  8. Lesburg, C.A., Zhai, G., Cane, D.E. & Christianson, D.W. Science 277, 1820–1824 (1997).

    Article  CAS  Google Scholar 

  9. Rynkiewicz, M.J., Cane, D.E. & Christianson, D.W. Proc. Natl. Acad. Sci. USA 98, 13543–13548 (2001).

    Article  CAS  Google Scholar 

  10. Tarshis, L.C., Yan, M., Poulter, C.D. & Sacchettini, J.C. Biochemistry 33, 10871–10877 (1994).

    Article  CAS  Google Scholar 

  11. Cao, R. et al. Proteins: Struct. Funct. Bioinformatics 78, 2417–2432 (2010).

    Article  CAS  Google Scholar 

  12. Whittington, D.A. et al. Proc. Natl. Acad. Sci. USA 99, 15375–15380 (2002).

    Article  CAS  Google Scholar 

  13. Starks, C.M., Back, K., Chappell, J. & Noel, J.P. Science 277, 1815–1820 (1997).

    Article  CAS  Google Scholar 

  14. Wendt, K.U., Poralla, K. & Schulz, G.E. Science 277, 1811–1815 (1997).

    Article  CAS  Google Scholar 

  15. Thoma, R. et al. Nature 432, 118–122 (2004).

    Article  CAS  Google Scholar 

  16. Köksal, M., Jin, Y., Coates, R.M., Croteau, R. & Christianson, D.W. Nature 469, 116–120 (2011).

    Article  Google Scholar 

  17. Prisic, S., Xu, J., Coates, R.M. & Peters, R.J. ChemBioChem 8, 869–874 (2007).

    Article  CAS  Google Scholar 

  18. Sun, T.-P. & Kamiya, Y. Plant Cell 6, 1509–1518 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Reinert, D.J., Balliano, G. & Schulz, G.E. Chem. Biol. 11, 121–126 (2004).

    Article  CAS  Google Scholar 

  20. Gandour, R.D. Bioorg. Chem. 10, 169–176 (1981).

    Article  CAS  Google Scholar 

  21. Wendt, K.U., Lenhart, A. & Schulz, G.E. J. Mol. Biol. 286, 175–187 (1999).

    Article  CAS  Google Scholar 

  22. Sato, T. & Hoshino, T. Biosci. Biotechnol. Biochem. 63, 2189–2198 (1999).

    Article  CAS  Google Scholar 

  23. Prisic, S. & Peters, R.J. Plant Physiol. 144, 445–454 (2007).

    Article  CAS  Google Scholar 

  24. Corey, E.J. et al. J. Am. Chem. Soc. 119, 1277–1288 (1997).

    Article  CAS  Google Scholar 

  25. Ochs, D., Tappe, C.H., Gärtner, P., Kellner, R. & Poralla, K. Eur. J. Biochem. 194, 75–80 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the US National Institutes of Health for grants GM56838 (D.W.C.), GM13956 (R.M.C.) and GM76324 (R.J.P.) for support of this research. Additionally, we thank the Advanced Photon Source at Argonne National Laboratory for beamline access.

Author information

Authors and Affiliations

Authors

Contributions

M.K. and D.W.C. performed the X-ray crystallographic studies. H.H. and R.M.C. synthesized terpenoid diphosphate ligands. R.J.P. supplied the AtCPSd84 construct, and M.K. prepared the final CPS construct that yielded crystals. All authors contributed to the interpretation of the results and preparation of the manuscript.

Corresponding author

Correspondence to David W Christianson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 3963 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köksal, M., Hu, H., Coates, R. et al. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase. Nat Chem Biol 7, 431–433 (2011). https://doi.org/10.1038/nchembio.578

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.578

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing