Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Social engineering for virtual 'big science' in systems biology

A new type of big science is emerging that involves knowledge integration and collaboration among small sciences. Because open collaboration involves participants with diverse motivations and interests, social dynamics have a critical role in making the project successful. Thus, proper 'social engineering' will have greater role in scientific project planning and management in the future.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Large projects require many enthusiastic and fulfilled participants.
Figure 2: Conceptual diagram of an open-flow model of knowledge sharing and integration.

References

  1. Donald, P.R. & van Helden, P.D. N. Engl. J. Med. 360, 2393–2395 (2009).

    Article  CAS  Google Scholar 

  2. Bauer-Mehren, A., Furlong, L.I. & Sanz, F. Mol. Syst. Biol. 5, 290 (2009).

    Article  Google Scholar 

  3. Caron, E. et al. Mol. Syst. Biol. 6, 453 (2010).

    Article  Google Scholar 

  4. Oda, K. & Kitano, H. Mol. Syst. Biol. 2, 2006.0015 (2006).

    Article  Google Scholar 

  5. Pico, A.R. et al. PLoS Biol. 6, e184 (2008).

    Article  Google Scholar 

  6. Kittuer, A., Suh, B., Pendleton, B. & Chi, E. in CHI 2007 Proceedings. 453–462 (ACM, 2007).

    Google Scholar 

  7. Callaway, E. Nature 468, 359–360 (2010).

    Article  CAS  Google Scholar 

  8. Herrgård, M.J. et al. Nat. Biotechnol. 26, 1155–1160 (2008).

    Article  Google Scholar 

  9. Kitano, H. et al. AI Mag. 18, 73–85 (1997).

    Google Scholar 

  10. Murphy, R. et al. in Springer Handbook of Robotics (eds. Siciliano, B. & Khatib, O.) Ch. 50, 1152–1174 (Springer-Verlag, New York, 2008).

    Google Scholar 

  11. Altshuler, J.S. et al. Sci. Transl. Med. 2, 52cm26 (2010).

    Article  Google Scholar 

  12. Singh, S. Cell 133, 201–203 (2008).

    Article  CAS  Google Scholar 

  13. Nwaka, S. & Ridley, R.G. Nat. Rev. Drug Discov. 2, 919–928 (2003).

    Article  CAS  Google Scholar 

  14. Hucka, M. et al. Bioinformatics 19, 524–531 (2003).

    Article  CAS  Google Scholar 

  15. Le Novère, N. et al. Nat. Biotechnol. 27, 735–741 (2009).

    Article  Google Scholar 

  16. Demir, E. et al. Nat. Biotechnol. 28, 935–942 (2010).

    Article  CAS  Google Scholar 

  17. Hill, C.T. Issues Sci. Technol. 24, 78–84 (2007).

    Google Scholar 

  18. Funahashi, A. et al. Proc. IEEE 96, 1254–1265 (2008).

    Article  Google Scholar 

  19. Matsuoka, Y., Ghosh, S., Kikuchi, N. & Kitano, H. Bioinformatics 26, 1381–1383 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Kitano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitano, H., Ghosh, S. & Matsuoka, Y. Social engineering for virtual 'big science' in systems biology. Nat Chem Biol 7, 323–326 (2011). https://doi.org/10.1038/nchembio.574

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.574

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing