Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR

Abstract

Here we report a comprehensive biological characterization of a potent and selective small-molecule inhibitor of the DNA damage response (DDR) kinase ATR. We show a profound synthetic lethal interaction between ATR and the ATM-p53 tumor suppressor pathway in cells treated with DNA-damaging agents and establish ATR inhibition as a way to transform the outcome for patients with cancer treated with ionizing radiation or genotoxic drugs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATR inhibition selectively sensitizes cancer cells to cisplatin.
Figure 2: Synthetic lethality between ATR and ATM-p53 in cisplatin-treated cells.

References

  1. Borst, P., Rottenberg, S. & Jonkers, J. Cell Cycle 7, 1353–1359 (2008).

    Article  CAS  Google Scholar 

  2. Oliver, T.G. et al. Genes Dev. 24, 837–852 (2010).

    Article  CAS  Google Scholar 

  3. Olaussen, K.A. et al. N. Engl. J. Med. 355, 983–991 (2006).

    Article  CAS  Google Scholar 

  4. Jackson, S.P. & Bartek, J. Nature 461, 1071–1078 (2009).

    Article  CAS  Google Scholar 

  5. Cimprich, K.A. & Cortez, D. Nat. Rev. Mol. Cell Biol. 9, 616–627 (2008).

    Article  CAS  Google Scholar 

  6. Jiang, H. et al. Genes Dev. 23, 1895–1909 (2009).

    Article  CAS  Google Scholar 

  7. Ding, L. et al. Nature 455, 1069–1075 (2008).

    Article  CAS  Google Scholar 

  8. Bolt, J. et al. Oral Oncol. 41, 1013–1020 (2005).

    Article  CAS  Google Scholar 

  9. Greenman, C. et al. Nature 446, 153–158 (2007).

    Article  CAS  Google Scholar 

  10. Halazonetis, T.D., Gorgoulis, V.G. & Bartek, J. Science 319, 1352–1355 (2008).

    Article  CAS  Google Scholar 

  11. Charrier, J.D. et al. J. Med. Chem. published online, 10.1021/jm101488z (17 March 2011).

  12. Ward, I.M. & Chen, J. J. Biol. Chem. 276, 47759–47762 (2001).

    Article  CAS  Google Scholar 

  13. Stiff, T. et al. Cancer Res. 64, 2390–2396 (2004).

    Article  CAS  Google Scholar 

  14. Ahn, J., Urist, M. & Prives, C. DNA Repair (Amst.) 3, 1039–1047 (2004).

    Article  CAS  Google Scholar 

  15. Jazayeri, A. et al. Nat. Cell Biol. 8, 37–45 (2006).

    Article  CAS  Google Scholar 

  16. Nghiem, P., Park, P.K., Kim, Y., Vaziri, C. & Schreiber, S.L. Proc. Natl. Acad. Sci. USA 98, 9092–9097 (2001).

    Article  CAS  Google Scholar 

  17. Wilsker, D. & Bunz, F. Mol. Cancer Ther. 6, 1406–1413 (2007).

    Article  CAS  Google Scholar 

  18. Nghiem, P., Park, P.K., Kim Ys, Y.S., Desai, B.N. & Schreiber, S.L. J. Biol. Chem. 277, 4428–4434 (2002).

    Article  CAS  Google Scholar 

  19. Cortez, D., Guntuku, S. & Elledge, S.J. Science 294, 1713–1716 (2001).

    Article  CAS  Google Scholar 

  20. Wang, W. Nat. Rev. Genet. 8, 735–748 (2007).

    Article  CAS  Google Scholar 

  21. Kim, W.J., Vo, Q.N., Shrivastav, M., Lataxes, T.A. & Brown, K.D. Oncogene 21, 3864–3871 (2002).

    Article  CAS  Google Scholar 

  22. Takemura, H. et al. J. Biol. Chem. 281, 30814–30823 (2006).

    Article  CAS  Google Scholar 

  23. Kinner, A., Wu, W., Staudt, C. & Iliakis, G. Nucleic Acids Res. 36, 5678–5694 (2008).

    Article  CAS  Google Scholar 

  24. Liu, E. et al. J. Cell Biol. 179, 643–657 (2007).

    Article  CAS  Google Scholar 

  25. Bakkenist, C.J. & Kastan, M.B. Nature 421, 499–506 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Peek, S. Falcon, M. Mangan, H. Sundaram and P. Weber for support with cell screening studies; P. Wang and J. Westcott for support with biochemical studies; R. Long for help generating the final figures and the full ATR project team for efforts leading to VE-821.

Author information

Authors and Affiliations

Authors

Contributions

P.M.R. conceived, supervised and evaluated the experiments with support from J.R.P., P.A.C. and J.M.C.G. J.M.L. contributed key reagents and to the cell signaling experiments. All other experiments were performed by P.M.R. and M.R.G. J.-D.C. and S.M. conceived the synthetic route to, and prepared, VE-821 with help from J.M.C.G. P.M.R. and J.R.P. wrote the paper with support from J.-D.C., P.A.C. and J.M.C.G.

Corresponding author

Correspondence to John R Pollard.

Ethics declarations

Competing interests

All authors are full time employees of Vertex Pharmaceuticals (Europe), Ltd. and hold equity in Vertex Pharmaceuticals, Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Discussion and Supplementary Methods (PDF 6279 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reaper, P., Griffiths, M., Long, J. et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 7, 428–430 (2011). https://doi.org/10.1038/nchembio.573

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.573

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer