Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conformational capture of the SAM-II riboswitch

Abstract

Riboswitches are gene regulation elements in mRNA that function by specifically responding to metabolites. Although the metabolite-bound states of riboswitches have proven amenable to structure determination efforts, knowledge of the structural features of riboswitches in their ligand-free forms and their ligand-response mechanisms giving rise to regulatory control is lacking. Here we explore the ligand-induced folding process of the S-adenosylmethionine type II (SAM-II) riboswitch using chemical and biophysical methods, including NMR and fluorescence spectroscopy, and single-molecule fluorescence imaging. The data reveal that the unliganded SAM-II riboswitch is dynamic in nature, in that its stem-loop element becomes engaged in a pseudoknot fold through base-pairing with nucleosides in the 3′ overhang containing the Shine-Dalgarno sequence. Although the pseudoknot structure is highly transient in the absence of its ligand, S-adenosylmethionine (SAM), it becomes conformationally restrained upon ligand recognition, through a conformational capture mechanism. These insights provide a molecular understanding of riboswitch dynamics that shed new light on the mechanism of riboswitch-mediated translational regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Class-II SAM riboswitch.
Figure 2: Pseudoknot interaction analyzed by labeled SAM-II RNA using NMR and fluorescence spectroscopy.
Figure 3: Dynamics of pseudoknot formation of the SAM-II riboswitch analyzed by smFRET experiments.
Figure 4: SAM-II variants containing single 2-aminopurine labels: structural analysis and fluorescence response.
Figure 5: Thermodynamics and kinetics of the ligand-induced SAM-II riboswitch response.
Figure 6: Folding model of the SAM-II riboswitch.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Roth, A. & Breaker, R.R. The structural and functional diversity of metabolite-binding riboswitches. Annu. Rev. Biochem. 78, 305–334 (2009).

    Article  CAS  Google Scholar 

  2. Montange, R.K. & Batey, R.T. Riboswitches: emerging themes in RNA structure and function. Annu. Rev. Biophys 37, 117–133 (2008).

    Article  CAS  Google Scholar 

  3. Blouin, S., Mulhbacher, J., Penedo, J.C. & Lafontaine, D.A. Riboswitches: ancient and promising genetic regulators. ChemBioChem 10, 400–416 (2009).

    Article  CAS  Google Scholar 

  4. Serganov, A. & Patel, D.J. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat. Rev. Genet. 8, 776–790 (2007).

    Article  CAS  Google Scholar 

  5. Schwalbe, H., Buck, J., Fürtig, B., Noeske, J. & Wöhnert, J. Structures of RNA switches: insight into molecular recognition and tertiary structure. Angew. Chem. Int. Edn. Engl. 46, 1212–1219 (2007).

    Article  CAS  Google Scholar 

  6. Nudler, E. & Mironov, A.S. The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 29, 11–17 (2004).

    Article  CAS  Google Scholar 

  7. Serganov, A. Determination of riboswitch structures: light at the end of the tunnel? RNA Biol. 7, 98–103 (2010).

    Article  CAS  Google Scholar 

  8. Gilbert, S.D., Rambo, R.P., Van Tyne, D. & Batey, R.T. Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nat. Struct. Mol. Biol. 15, 177–182 (2008).

    Article  CAS  Google Scholar 

  9. Garst, A.D. & Batey, R.T. A switch in time: detailing the life of a riboswitch. Biochim. Biophys. Acta 1789, 584–591 (2009).

    Article  CAS  Google Scholar 

  10. Stoddard, C.D. et al. Free state conformational sampling of the SAM-I riboswitch aptamer domain. Structure 18, 787–797 (2010).

    Article  CAS  Google Scholar 

  11. Baird, N.J. & Ferré-D'Amaré, A.R. Idiosyncratically tuned switching behavior of riboswitch aptamer domains revealed by comparative small-angle X-ray scattering analysis. RNA 16, 598–609 (2010).

    Article  CAS  Google Scholar 

  12. Edwards, A.L., Reyes, F.E., Héroux, A. & Batey, R.T. Structural basis for recognition of S-adenosylhomocysteine by riboswitches. RNA 16, 2144–2155 (2010).

    Article  CAS  Google Scholar 

  13. Bosshard, H.R. Molecular recognition by induced fit: how fit is the concept? News Physiol. Sci. 16, 171–173 (2001).

    CAS  PubMed  Google Scholar 

  14. Weikl, T.R. & von Deuster, C. Selected-fit versus induced-fit protein binding: Kinetic differences and mutational analysis. Proteins 75, 104–110 (2009).

    Article  CAS  Google Scholar 

  15. Noeske, J. et al. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch. Nucleic Acids Res. 35, 572–583 (2007).

    Article  CAS  Google Scholar 

  16. Boehr, D.D., Nussinov, R. & Wright, P.E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009).

    Article  CAS  Google Scholar 

  17. Leulliot, N. & Varani, G. Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 40, 7947–7956 (2001).

    Article  CAS  Google Scholar 

  18. Duchardt-Ferner, E. et al. Highly modular structure and ligand binding by conformational capture in a minimalistic riboswitch. Angew. Chem. Int. Edn Engl. 49, 6216–6219 (2010).

    Article  CAS  Google Scholar 

  19. Stelzer, A.C., Kratz, J.D., Zhang, Q. & Al-Hashimi, H.M. RNA dynamics by design: biasing ensembles towards the ligand-bound state. Angew. Chem. Int. Edn Engl. 49, 5731–5733 (2010).

    Article  CAS  Google Scholar 

  20. Wang, J.X. & Breaker, R.R. Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. Biochem. Cell Biol. 86, 157–168 (2008).

    Article  CAS  Google Scholar 

  21. Poiata, E., Meyer, M.M., Ames, T.D. & Breaker, R.R. A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria. RNA 15, 2046–2056 (2009).

    Article  CAS  Google Scholar 

  22. Corbino, K.A. et al. Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol. 6, R70 (2005).

    Article  Google Scholar 

  23. Rieder, U., Lang, K., Kreutz, C., Polacek, N. & Micura, R. Evidence for pseudoknot formation of class I preQ1 riboswitch aptamers. ChemBioChem 10, 1141–1144 (2009).

    Article  CAS  Google Scholar 

  24. Puffer, B. et al. 5-Fluoro pyrimidines: labels to probe DNA and RNA secondary structures by 1D 19F NMR spectroscopy. Nucleic Acids Res. 37, 7728–7740 (2009).

    Article  CAS  Google Scholar 

  25. Rieder, U., Kreutz, C. & Micura, R. Folding of a transcriptionally acting preQ1 riboswitch. Proc. Natl. Acad. Sci. USA 107, 10804–10809 (2010).

    Article  CAS  Google Scholar 

  26. Lang, K. & Micura, R. The preparation of site-specifically modified riboswitch domains as an example for enzymatic ligation of chemically synthesized RNA fragments. Nat. Protoc. 3, 1457–1466 (2008).

    Article  CAS  Google Scholar 

  27. Alemán, E.A., Lamichhane, R. & Rueda, D. Exploring RNA folding one molecule at a time. Curr. Opin. Chem. Biol. 12, 647–654 (2008).

    Article  Google Scholar 

  28. Lemay, J.F., Penedo, J.C., Tremblay, R., Lilley, D.M. & Lafontaine, D.A. Folding of the adenine riboswitch. Chem. Biol. 13, 857–868 (2006).

    Article  CAS  Google Scholar 

  29. Brenner, M.D., Scanlan, M.S., Nahas, M.K., Ha, T. & Silverman, S.K. Multivector fluorescence analysis of the xpt guanine riboswitch aptamer domain and the conformational role of guanine. Biochemistry 49, 1596–1605 (2010).

    Article  CAS  Google Scholar 

  30. Munro, J.B., Altman, R.B., O'Connor, N. & Blanchard, S.C. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell 25, 505–517 (2007).

    Article  CAS  Google Scholar 

  31. Lang, K., Rieder, R. & Micura, R. Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach. Nucleic Acids Res. 35, 5370–5378 (2007).

    Article  CAS  Google Scholar 

  32. Rieder, R., Lang, K., Graber, D. & Micura, R. Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control. ChemBioChem 8, 896–902 (2007).

    Article  CAS  Google Scholar 

  33. Kelley, J.M. & Hamelberg, D. Atomistic basis for the on-off signaling mechanism in SAM-II riboswitch. Nucleic Acids Res. 38, 1392–1400 (2010).

    Article  CAS  Google Scholar 

  34. Mortimer, S.A. & Weeks, K.M. A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J. Am. Chem. Soc. 129, 4144–4145 (2007).

    Article  CAS  Google Scholar 

  35. Weeks, K.M. Advances in RNA structure analysis by chemical probing. Curr. Opin. Struct. Biol. 20, 295–304 (2010).

    Article  CAS  Google Scholar 

  36. Staple, D.W. & Butcher, S.E. Pseudoknots: RNA structures with diverse functions. PLoS Biol. 3, e213 (2005).

    Article  Google Scholar 

  37. Serganov, A., Ennifar, E., Portier, C., Ehresmann, B. & Ehresmann, C. Do mRNA and rRNA binding sites of E.coli ribosomal protein S15 share common structural determinants? J. Mol. Biol. 320, 963–978 (2002).

    Article  CAS  Google Scholar 

  38. Munro, J.B., Wasserman, M.R., Altman, R.B., Wang, L. & Blanchard, S.C. Correlated conformational events in EF-G and the ribosome regulate translocation. Nat. Struct. Mol. Biol. 17, 1470–1477 (2010).

    Article  CAS  Google Scholar 

  39. Al-Hashimi, H.M. & Walter, N.G. RNA dynamics: it is about time. Curr. Opin. Struct. Biol. 18, 321–329 (2008).

    Article  CAS  Google Scholar 

  40. Zhang, Q., Stelzer, A.C., Fisher, C.K. & Al-Hashimi, H.M. Visualizing spatially correlated dynamics that directs RNA conformational transitions. Nature 450, 1263–1267 (2007).

    Article  CAS  Google Scholar 

  41. Frank, A.T., Stelzer, A.C., Al-Hashimi, H.M. & Andricioaei, I. Constructing RNA dynamical ensembles by combining MD and motionally decoupled NMR RDCs: new insights into RNA dynamics and adaptive ligand recognition. Nucleic Acids Res. 37, 3670–3679 (2009).

    Article  CAS  Google Scholar 

  42. Lu, C. et al. SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch. J. Mol. Biol. 404, 803–818 (2010).

    Article  CAS  Google Scholar 

  43. Wilson, R.C. et al. Tuning riboswitch regulation through conformational selection. J. Mol. Biol. 4, 926–938 (2011).

    Article  Google Scholar 

  44. Ottink, O.M. et al. Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism. RNA 13, 2202–2212 (2007).

    Article  CAS  Google Scholar 

  45. Noeske, J., Schwalbe, H. & Wöhnert, J. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain. Nucleic Acids Res. 35, 5262–5273 (2007).

    Article  CAS  Google Scholar 

  46. Lee, M.K., Gal, M., Frydman, L. & Varani, G. Real-time multidimensional NMR follows RNA folding with second resolution. Proc. Natl. Acad. Sci. USA 107, 9192–9197 (2010).

    Article  CAS  Google Scholar 

  47. Hermann, T. & Patel, D.J. Adaptive recognition by nucleic acid aptamers. Science 287, 820–825 (2000).

    Article  CAS  Google Scholar 

  48. Dave, R., Terry, D.S., Munro, J.B. & Blanchard, S.C. Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophys. J. 96, 2371–2381 (2009).

    Article  CAS  Google Scholar 

  49. Qin, F. & Li, L. Model-based fitting of single-channel dwell-time distributions. Biophys. J. 87, 1657–1671 (2004).

    Article  CAS  Google Scholar 

  50. Lescoute, A. & Westhof, E. The interaction networks of structured RNAs. Nucleic Acids Res. 34, 6587–6604 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Lafontaine for discussions on labeling of riboswitches for smFRET experiments; K. Lang (University of Innsbruck; presently at Medical Research Council, Cambridge) for a previous synthesis of 15N-labeled cytidine phosphoramidite; C. Kreutz and M. Tollinger for NMR assistance; D.S. Terry for contributions to the development and implementation of the single-molecule imaging platform and data analysis software used; and M. Soulière for critical reading of the manuscript. This work was funded by the Austrian Science Foundation FWF (I317 and P21641 to R.M.) and the Austrian Ministry of Science and Research (GenAU project consortium 'non-coding RNAs' P0726-012-012 to R.M.). S.C.B. was supported by the Irma T. Hirschl/Monique Weill-Caulier Trust.

Author information

Authors and Affiliations

Authors

Contributions

A.H. performed RNA synthesis, labeling, enzymatic ligations and ensemble fluorescence spectroscopic measurements. S.C.B. performed smFRET measurements. U.R. performed NMR experiments. M.A. synthesized 5-fluorocytidine phosphoramidite for RNA synthesis. R.M., S.C.B. and A.H. analyzed the data. R.M. designed the study and wrote the paper (together with S.C.B. and A.H.).

Corresponding authors

Correspondence to Scott C Blanchard or Ronald Micura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–7 and Supplementary Table 1 (PDF 1781 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haller, A., Rieder, U., Aigner, M. et al. Conformational capture of the SAM-II riboswitch. Nat Chem Biol 7, 393–400 (2011). https://doi.org/10.1038/nchembio.562

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.562

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing