Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia

Abstract

Cannabinoids enhance the function of glycine receptors (GlyRs). However, little is known about the mechanisms and behavioral implication of cannabinoid-GlyR interaction. Using mutagenesis and NMR analysis, we have identified a serine at 296 in the GlyR protein critical for the potentiation of IGly by Δ9-tetrahydrocannabinol (THC), a major psychoactive component of marijuana. The polarity of the amino acid residue at 296 and the hydroxyl groups of THC are critical for THC potentiation. Removal of the hydroxyl groups of THC results in a compound that does not affect IGly when applied alone but selectively antagonizes cannabinoid-induced potentiating effect on IGly and analgesic effect in a tail-flick test in mice. The cannabinoid-induced analgesia is absent in mice lacking α3GlyRs but not in those lacking CB1 and CB2 receptors. These findings reveal a new mechanism underlying cannabinoid potentiation of GlyRs, which could contribute to some of the cannabis-induced analgesic and therapeutic effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: THC potentiation of IGly.
Figure 2: A distinct site of Ser296 is critical for THC potentiation of the α1 and α3 GlyRs.
Figure 3: NMR analysis.
Figure 4: Mutagenesis and correlation analysis.
Figure 5: Functional characterization of 5-desoxy-THC and di-desoxy-THC.
Figure 6: The critical role of the α3 GlyR in the THC analgesia in the TFR.

Similar content being viewed by others

References

  1. Pacher, P., Batkai, S. & Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 58, 389–462 (2006).

    Article  CAS  Google Scholar 

  2. Zimmer, A., Zimmer, A.M., Hohmann, A.G., Herkenham, M. & Bonner, T.I. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc. Natl. Acad. Sci. USA 96, 5780–5785 (1999).

    Article  CAS  Google Scholar 

  3. Oz, M. Receptor-independent actions of cannabinoids on cell membranes: focus on endocannabinoids. Pharmacol. Ther. 111, 114–144 (2006).

    Article  CAS  Google Scholar 

  4. Zhang, L. & Xiong, W. Modulation of the Cys-loop ligand-gated ion channels by fatty acid and cannabinoids. Vitam. Horm. 81, 315–335 (2009).

    Article  Google Scholar 

  5. Welch, S.P., Huffman, J.W. & Lowe, J. Differential blockade of the antinociceptive effects of centrally administered cannabinoids by SR141716A. J. Pharmacol. Exp. Ther. 286, 1301–1308 (1998).

    CAS  PubMed  Google Scholar 

  6. Pernía-Andrade, A.J. et al. Spinal endocannabinoids and CB1 receptors mediate C-fiber-induced heterosynaptic pain sensitization. Science 325, 760–764 (2009).

    Article  Google Scholar 

  7. Zhang, G., Chen, W., Lao, L. & Marvizon, J.C. Cannabinoid CB1 receptor facilitation of substance P release in the rat spinal cord, measured as neurokinin 1 receptor internalization. Eur. J. Neurosci. 31, 225–237 (2010).

    Article  CAS  Google Scholar 

  8. Klein, T.W. & Newton, C.A. Therapeutic potential of cannabinoid-based drugs. Adv. Exp. Med. Biol. 601, 395–413 (2007).

    Article  Google Scholar 

  9. Izzo, A.A., Borrelli, F., Capasso, R., Di Marzo, V. & Mechoulam, R. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol. Sci. 30, 515–527 (2009).

    Article  CAS  Google Scholar 

  10. Hejazi, N. et al. Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol. Pharmacol. 69, 991–997 (2006).

    CAS  PubMed  Google Scholar 

  11. Yang, Z. et al. Subunit-specific modulation of glycine receptors by cannabinoids and N-arachidonyl-glycine. Biochem. Pharmacol. 76, 1014–1023 (2008).

    Article  CAS  Google Scholar 

  12. Demir, R. et al. Modulation of glycine receptor function by the synthetic cannabinoid HU210. Pharmacology 83, 270–274 (2009).

    Article  CAS  Google Scholar 

  13. Lynch, J.W. Native glycine receptor subtypes and their physiological roles. Neuropharmacology 56, 303–309 (2009).

    Article  CAS  Google Scholar 

  14. Shiang, R. et al. Mutational analysis of familial and sporadic hyperekplexia. Ann. Neurol. 38, 85–91 (1995).

    Article  CAS  Google Scholar 

  15. Shiang, R. et al. Mutations in the alpha 1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat. Genet. 5, 351–358 (1993).

    Article  CAS  Google Scholar 

  16. Harvey, R.J. et al. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304, 884–887 (2004).

    Article  CAS  Google Scholar 

  17. Griffon, N. et al. Molecular determinants of glycine receptor subunit assembly. EMBO J. 18, 4711–4721 (1999).

    Article  CAS  Google Scholar 

  18. Jordt, S.E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004).

    Article  CAS  Google Scholar 

  19. Kimura, T., Cheng, K., Rice, K.C. & Gawrisch, K. Location, structure, and dynamics of the synthetic cannabinoid ligand CP-55,940 in lipid bilayers. Biophys. J. 96, 4916–4924 (2009).

    Article  CAS  Google Scholar 

  20. Grossman, M.L., Basbaum, A.I. & Fields, H.L. Afferent and efferent connections of the rat tail flick reflex (a model used to analyze pain control mechanisms). J. Comp. Neurol. 206, 9–16 (1982).

    Article  CAS  Google Scholar 

  21. Lobo, I.A. & Harris, R.A. Sites of alcohol and volatile anesthetic action on glycine receptors. Int. Rev. Neurobiol. 65, 53–87 (2005).

    Article  CAS  Google Scholar 

  22. Harris, R.A., Trudell, J.R. & Mihic, S.J. Ethanol's molecular targets. Sci. Signal. 1, re7 (2008).

    Article  Google Scholar 

  23. Smith, P.B. & Martin, B.R. Spinal mechanisms of delta 9-tetrahydrocannabinol-induced analgesia. Brain Res. 578, 8–12 (1992).

    Article  CAS  Google Scholar 

  24. Compton, D.R., Aceto, M.D., Lowe, J. & Martin, B.R. In vivo characterization of a specific cannabinoid receptor antagonist (SR141716A): inhibition of delta 9-tetrahydrocannabinol-induced responses and apparent agonist activity. J. Pharmacol. Exp. Ther. 277, 586–594 (1996).

    CAS  Google Scholar 

  25. Varvel, S.A. et al. Delta9-tetrahydrocannbinol accounts for the antinociceptive, hypothermic, and cataleptic effects of marijuana in mice. J. Pharmacol. Exp. Ther. 314, 329–337 (2005).

    Article  CAS  Google Scholar 

  26. Marris, E. More pain studies needed. Nature 458, 394–395 (2009).

    Article  CAS  Google Scholar 

  27. Ledent, C. et al. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283, 401–404 (1999).

    Article  CAS  Google Scholar 

  28. Zeilhofer, H.U. The glycinergic control of spinal pain processing. Cell. Mol. Life Sci. 62, 2027–2035 (2005).

    Article  CAS  Google Scholar 

  29. Zeilhofer, H.U. Prostanoids in nociception and pain. Biochem. Pharmacol. 73, 165–174 (2007).

    Article  CAS  Google Scholar 

  30. Findlay, G.S. et al. Glycine receptor knock-in mice and hyperekplexia-like phenotypes: comparisons with the null mutant. J. Neurosci. 23, 8051–8059 (2003).

    Article  CAS  Google Scholar 

  31. Huestis, M.A. Human cannabinoid pharmacokinetics. Chem. Biodivers. 4, 1770–1804 (2007).

    Article  CAS  Google Scholar 

  32. Spivak, C.E., Lupica, C.R. & Oz, M. The endocannabinoid anandamide inhibits the function of alpha4beta2 nicotinic acetylcholine receptors. Mol. Pharmacol. 72, 1024–1032 (2007).

    Article  CAS  Google Scholar 

  33. Xiong, W., Hosoi, M., Koo, B.N. & Zhang, L. Anandamide inhibition of 5–HT3A receptors varies with receptor density and desensitization. Mol. Pharmacol. 73, 314–322 (2008).

    Article  CAS  Google Scholar 

  34. Ahrens, J. et al. The nonpsychotropic cannabinoid cannabidiol modulates and directly activates alpha-1 and alpha-1-Beta glycine receptor function. Pharmacology 83, 217–222 (2009).

    Article  CAS  Google Scholar 

  35. Laube, B., Maksay, G., Schemm, R. & Betz, H. Modulation of glycine receptor function: a novel approach for therapeutic intervention at inhibitory synapses? Trends Pharmacol. Sci. 23, 519–527 (2002).

    Article  CAS  Google Scholar 

  36. Delaney, A.J., Esmaeili, A., Sedlak, P.L., Lynch, J.W. & Sah, P. Differential expression of glycine receptor subunits in the rat basolateral and central amygdala. Neurosci. Lett. 469, 237–242 (2010).

    Article  CAS  Google Scholar 

  37. Buckley, N.E. et al. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor. Eur. J. Pharmacol. 396, 141–149 (2000).

    Article  CAS  Google Scholar 

  38. Young-Pearse, T.L., Ivic, L., Kriegstein, A.R. & Cepko, C.L. Characterization of mice with targeted deletion of glycine receptor alpha 2. Mol. Cell. Biol. 26, 5728–5734 (2006).

    Article  CAS  Google Scholar 

  39. Hu, X.Q., Zhang, L., Stewart, R.R. & Weight, F.F. Arginine 222 in the pre-transmembrane domain 1 of 5–HT3A receptors links agonist binding to channel gating. J. Biol. Chem. 278, 46583–46589 (2003).

    Article  CAS  Google Scholar 

  40. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

    Article  CAS  Google Scholar 

  41. Hilf, R.J. & Dutzler, R. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118 (2009).

    Article  CAS  Google Scholar 

  42. Canlas, C.G., Cui, T., Li, L., Xu, Y. & Tang, P. Anesthetic modulation of protein dynamics: insight from an NMR study. J. Phys. Chem. B 112, 14312–14318 (2008).

    Article  CAS  Google Scholar 

  43. Ma, D., Liu, Z., Li, L., Tang, P. & Xu, Y. Structure and dynamics of the second and third transmembrane domains of human glycine receptor. Biochemistry 44, 8790–8800 (2005).

    Article  CAS  Google Scholar 

  44. Tang, P., Mandal, P.K. & Xu, Y. NMR structures of the second transmembrane domain of the human glycine receptor alpha(1) subunit: model of pore architecture and channel gating. Biophys. J. 83, 252–262 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.L. Cepko for providing α2−/− Glra mice. We especially thank D.M. Lovinger for critical comments on the manuscript. This work was supported by funds from the intramural program of the US National Institute on Alcohol Abuse and Alcoholism. We acknowledge the grant support (R37GM049202 to Y.X.) from the US National Institute of General Medical Sciences of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

W.X. and L.Z. designed and conducted electrophysiology, biochemical and biophysical experiments and animal behavioral tests. K.-J.C. and K.C.R. synthesized cannabinoid chemicals. T-X.C. and Y.X. conducted protein expression, purification and NMR experiments of the full-length transmembrane domains of the α1 GlyR and carried out NMR analysis. G.G. conducted animal behavioral tests. L.Z. supervised the project and wrote the manuscript. Y.X. critically revised the manuscript.

Corresponding author

Correspondence to Li Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–6 (PDF 868 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, W., Cheng, K., Cui, T. et al. Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. Nat Chem Biol 7, 296–303 (2011). https://doi.org/10.1038/nchembio.552

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.552

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing