Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A whole-organism screen identifies new regulators of fat storage

Abstract

The regulation of energy homeostasis integrates diverse biological processes ranging from behavior to metabolism and is linked fundamentally to numerous disease states. To identify new molecules that can bypass homeostatic compensatory mechanisms of energy balance in intact animals, we screened for small-molecule modulators of Caenorhabditis elegans fat content. We report on several molecules that modulate fat storage without obvious deleterious effects on feeding, growth and reproduction. A subset of these compounds also altered fat storage in mammalian and insect cell culture. We found that one of the newly identified compounds exerts its effects in C. elegans through a pathway that requires previously undescribed functions of an AMP-activated kinase catalytic subunit and a transcription factor previously unassociated with fat regulation. Thus, our strategy identifies small molecules that are effective within the context of intact animals and reveals relationships between new pathways that operate across phyla to influence energy homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pharmacological modulation of Nile Red staining in C. elegans.
Figure 2: Fat metabolism in C. elegans is modulated by diverse compounds.
Figure 3: Compounds that lower Nile Red staining in C. elegans modulate lipid accumulation in mammalian and insect cell culture models of adipogenesis and lipid uptake.
Figure 4: The fat phenotype induced by F17 requires an AMPK complex containing the catalytic subunit encoded by aak-1.
Figure 5: Loss of K08F8.2 partially suppresses the F17 low-fat phenotype.
Figure 6: F17 activates the AMPK pathway and reduces the number of lipid droplets in HepG2 hepatocarcinoma cells.

Similar content being viewed by others

References

  1. Spiegelman, B.M. & Flier, J.S. Obesity and the regulation of energy balance. Cell 104, 531–543 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Kopelman, P.G. Obesity as a medical problem. Nature 404, 635–643 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Knight, Z.A. & Shokat, K.M. Chemical genetics: where genetics and pharmacology meet. Cell 128, 425–430 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Stelling, J. et al. Robustness of cellular functions. Cell 118, 675–685 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Wheeler, G.N. & Brandli, A.W. Simple vertebrate models for chemical genetics and drug discovery screens: Lessons from zebrafish and Xenopus. Dev. Dyn. 238, 1287–1308 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Moy, T.I. et al. High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem. Biol. 4, 527–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Petrascheck, M., Ye, X. & Buck, L.B. An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 450, 553–556 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Kwok, T.C. et al. A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature 441, 91–95 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Jones, A.K., Buckingham, S.D. & Sattelle, D.B. Chemistry-to-gene screens in Caenorhabditis elegans. Nat. Rev. Drug Discov. 4, 321–330 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Schafer, W.R., Sanchez, B.M. & Kenyon, C.J. Genes affecting sensitivity to serotonin in Caenorhabditis elegans. Genetics 143, 1219–1230 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Weinshenker, D., Garriga, G. & Thomas, J.H. Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. J. Neurosci. 15, 6975–6985 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Watts, J.L. Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends Endocrinol. Metab. 20, 58–65 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perez, C.L. & Van Gilst, M.R. A 13C isotope labeling strategy reveals the influence of insulin signaling on lipogenesis in C. elegans. Cell Metab. 8, 266–274 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Jones, K.T. & Ashrafi, K. Caenorhabditis elegans as an emerging model for studying the basic biology of obesity. Dis. Model. Mech. 2, 224–229 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McKay, R.M. et al. C. elegans: a model for exploring the genetics of fat storage. Dev. Cell 4, 131–142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jia, K., Chen, D. & Riddle, D.L. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131, 3897–3906 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Kimura, K.D. et al. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Srinivasan, S. et al. Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms. Cell Metab. 7, 533–544 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Bono, M. & Bargmann, C.I. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94, 679–689 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Suo, S., Culotti, J.G. & Van Tol, H.H. Dopamine counteracts octopamine signalling in a neural circuit mediating food response in C. elegans. EMBO J. 28, 2437–2448 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ashrafi, K. et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268–272 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Greenspan, P., Mayer, E.P. & Fowler, S.D. Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100, 965–973 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Van Gilst, M.R. et al. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biol. 3, e53 (2005).

    Article  PubMed  Google Scholar 

  24. Jones, K.S. et al. A high throughput live transparent animal bioassay to identify non-toxic small molecules or genes that regulate vertebrate fat metabolism for obesity drug development. Nutr. Metab. (Lond) 5, 23 (2008).

    Article  Google Scholar 

  25. Sullivan, J.E. et al. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett. 353, 33–36 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Watts, J.L. & Browse, J. A palmitoyl-CoA-specific delta9 fatty acid desaturase from Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 272, 263–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Van Gilst, M.R., Hadjivassiliou, H. & Yamamoto, K.R. A Caenorhabditis elegans nutrient response system partially dependent on nuclear receptor NHR-49. Proc. Natl. Acad. Sci. USA 102, 13496–13501 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, F. et al. An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442, 700–704 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. MacDougald, O.A. & Lane, M.D. Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 64, 345–373 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Guo, Y. et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453, 657–661 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Horton, J.D. et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl. Acad. Sci. USA 100, 12027–12032 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kniazeva, M. et al. Monomethyl branched-chain fatty acids play an essential role in Caenorhabditis elegans development. PLoS Biol. 2, E257 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shiri-Sverdlov, R. et al. Identification of TUB as a novel candidate gene influencing body weight in humans. Diabetes 55, 385–389 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Goldstone, A.P. & Beales, P.L. Genetic obesity syndromes. Front. Horm. Res. 36, 37–60 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Steinberg, G.R. & Kemp, B.E. AMPK in health and disease. Physiol. Rev. 89, 1025–1078 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Apfeld, J. et al. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 18, 3004–3009 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Narbonne, P. & Roy, R. Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival. Nature 457, 210–214 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Dobrzyn, P. et al. Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc. Natl. Acad. Sci. USA 101, 6409–6414 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Corton, J.M. et al. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 229, 558–565 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Owen, M.R., Doran, E. & Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cool, B. et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3, 403–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, X., Jia, H. & Chamberlin, H.M. The bZip proteins CES-2 and ATF-2 alter the timing of transcription for a cell-specific target gene in C. elegans. Dev. Biol. 289, 456–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davies, S.P., Sim, A.T. & Hardie, D.G. Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Eur. J. Biochem. 187, 183–190 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. O'Rourke, E.J. et al. C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab. 10, 430–435 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brooks, K.K., Liang, B. & Watts, J.L. The influence of bacterial diet on fat storage in C. elegans. PLoS ONE 4, e7545 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mörck, C. et al. Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 106, 18285–18290 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kodiha, M. et al. Localization of AMP kinase is regulated by stress, cell density, and signaling through the MEK→ERK1/2 pathway. Am. J. Physiol. Cell Physiol. 293, C1427–C1436 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. MacRae, C.A. & Peterson, R.T. Zebrafish-based small molecule discovery. Chem. Biol. 10, 901–908 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Lum for his help and advice with the initial C. elegans experiments. We are thankful to B. Mullaney and K. Cunningham for helpful discussions and comments on the manuscript. We thank K. Thorn and the Nikon Imaging Center for use of the Nikon 6D automated epifluorescence microscope and help with imaging as well as the Small Molecule Discovery Center at the University of California, San Francisco, for providing the small-molecule library. This work was supported by grants from the US National Cancer Institute and US National Institute of Environmental Health Sciences (ES012801, ES019458 and CA056721) to Z.W., the US National Institute of Diabetes and Digestive and Kidney Diseases (DK070149) to K.A., the US National Institute of General Medicine (GM081863) to R.J.B. and a Byers Award to K.A. and R.J.B.

Author information

Authors and Affiliations

Authors

Contributions

G.A.L., K.A. and Z.W. conceived the study design. G.A.L., J.L. and N.M. performed the experiments. G.A.L., K.A., R.J.B. and Z.W. analyzed the data. G.A.L., K.A. and Z.W. wrote the paper. All the authors read, revised and approved the manuscript.

Corresponding authors

Correspondence to Kaveh Ashrafi or Zena Werb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–7 (PDF 2675 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemieux, G., Liu, J., Mayer, N. et al. A whole-organism screen identifies new regulators of fat storage. Nat Chem Biol 7, 206–213 (2011). https://doi.org/10.1038/nchembio.534

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.534

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing