Abstract
Triptolide (1) is a structurally unique diterpene triepoxide isolated from a traditional Chinese medicinal plant with anti-inflammatory, immunosuppressive, contraceptive and antitumor activities. Its molecular mechanism of action, however, has remained largely elusive to date. We report that triptolide covalently binds to human XPB (also known as ERCC3), a subunit of the transcription factor TFIIH, and inhibits its DNA-dependent ATPase activity, which leads to the inhibition of RNA polymerase II–mediated transcription and likely nucleotide excision repair. The identification of XPB as the target of triptolide accounts for the majority of the known biological activities of triptolide. These findings also suggest that triptolide can serve as a new molecular probe for studying transcription and, potentially, as a new type of anticancer agent through inhibition of the ATPase activity of XPB.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
HIV cure strategies: which ones are appropriate for Africa?
Cellular and Molecular Life Sciences Open Access 06 July 2022
-
Incorporation of CENP-A/CID into centromeres during early Drosophila embryogenesis does not require RNA polymerase II–mediated transcription
Chromosoma Open Access 11 January 2022
-
Rationale for MYC imaging and targeting in pancreatic cancer
EJNMMI Research Open Access 12 October 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Koehn, F.E. & Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 4, 206–220 (2005).
Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815 (1991).
Heitman, J., Movva, N.R. & Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905–909 (1991).
Griffith, E.C. et al. Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem. Biol. 4, 461–471 (1997).
Low, W.K. et al. Inhibition of eukaryotic translation initiation by the marine natural product pateamine A. Mol. Cell 20, 709–722 (2005).
Kupchan, S.M., Court, W.A., Dailey, R.G. Jr., Gilmore, C.J. & Bryan, R.F. Triptolide and tripdiolide, novel antileukemic diterpenoid triepoxides from Tripterygium wilfordii. J. Am. Chem. Soc. 94, 7194–7195 (1972).
Zhao, X.-M. Supplement to Materia Medica (Zhang's Jie Xing Tang Publishing House, 1765).
Shamon, L.A. et al. Evaluation of the mutagenic, cytotoxic, and antitumor potential of triptolide, a highly oxygenated diterpene isolated from Tripterygium wilfordii. Cancer Lett. 112, 113–117 (1997).
Gu, W.Z. & Brandwein, S.R. Inhibition of type II collagen-induced arthritis in rats by triptolide. Int. J. Immunopharmacol. 20, 389–400 (1998).
Yang, S.X., Gao, H.L., Xie, S.S., Zhang, W.R. & Long, Z.Z. Immunosuppression of triptolide and its effect on skin allograft survival. Int. J. Immunopharmacol. 14, 963–969 (1992).
Kitzen, J.J. et al. Phase I dose-escalation study of F60008, a novel apoptosis inducer, in patients with advanced solid tumours. Eur. J. Cancer 45, 1764–1772 (2009).
Qiu, D. et al. Immunosuppressant PG490 (triptolide) inhibits T-cell interleukin-2 expression at the level of purine-box/nuclear factor of activated T-cells and NF-kappaB transcriptional activation. J. Biol. Chem. 274, 13443–13450 (1999).
Chang, W.T. et al. Triptolide and chemotherapy cooperate in tumor cell apoptosis. A role for the p53 pathway. J. Biol. Chem. 276, 2221–2227 (2001).
Westerheide, S.D., Kawahara, T.L., Orton, K. & Morimoto, R.I. Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J. Biol. Chem. 281, 9616–9622 (2006).
McCallum, C. et al. Triptolide binds covalently to a 90 kDa nuclear protein. Role of epoxides in binding and activity. Immunobiology 212, 549–556 (2007).
McCallum, C. et al. In vitro versus in vivo effects of triptolide: the role of transcriptional inhibition. Therapy 2, 261–273 (2005).
Vispé, S. et al. Triptolide is an inhibitor of RNA polymerase I and II-dependent transcription leading predominantly to down-regulation of short-lived mRNA. Mol. Cancer Ther. 8, 2780–2790 (2009).
Pan, J. RNA polymerase—an important molecular target of triptolide in cancer cells. Cancer Lett. 292, 149–152 (2010).
Leuenroth, S.J. et al. Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc. Natl. Acad. Sci. USA 104, 4389–4394 (2007).
Lindell, T.J., Weinberg, F., Morris, P.W., Roeder, R.G. & Rutter, W.J. Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science 170, 447–449 (1970).
Chao, S.H. et al. Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J. Biol. Chem. 275, 28345–28348 (2000).
Reich, E., Franklin, R.M., Shatkin, A.J. & Tatum, E.L. Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science 134, 556–557 (1961).
Alonso, M.A. & Carrasco, L. Action of membrane-active compounds on mammalian cells. Permeabilization of human cells by ionophores to inhibitors of translation and transcription. Eur. J. Biochem. 109, 535–540 (1980).
Zandomeni, R., Zandomeni, M.C., Shugar, D. & Weinmann, R. Casein kinase type II is involved in the inhibition by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole of specific RNA polymerase II transcription. J. Biol. Chem. 261, 3414–3419 (1986).
Leuenroth, S.J. & Crews, C.M. Triptolide-induced transcriptional arrest is associated with changes in nuclear substructure. Cancer Res. 68, 5257–5266 (2008).
Kadesch, T.R. & Chamberlin, M.J. Studies of in vitro transcription by calf thymus RNA polymerase II using a novel duplex DNA template. J. Biol. Chem. 257, 5286–5295 (1982).
Goodrich, J.A. & Tjian, R. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77, 145–156 (1994).
Hieb, A.R., Baran, S., Goodrich, J.A. & Kugel, J.F. An 8 nt RNA triggers a rate-limiting shift of RNA polymerase II complexes into elongation. EMBO J. 25, 3100–3109 (2006).
Gilman, B., Drullinger, L.F., Kugel, J.F. & Goodrich, J.A. TATA-binding protein and transcription factor IIB induce transcript slipping during early transcription by RNA polymerase II. J. Biol. Chem. 284, 9093–9098 (2009).
Kugel, J.F. & Goodrich, J.A. Translocation after synthesis of a four-nucleotide RNA commits RNA polymerase II to promoter escape. Mol. Cell. Biol. 22, 762–773 (2002).
Schaeffer, L. et al. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260, 58–63 (1993).
Takagi, Y. et al. Ubiquitin ligase activity of TFIIH and the transcriptional response to DNA damage. Mol. Cell 18, 237–243 (2005).
LeRoy, G., Drapkin, R., Weis, L. & Reinberg, D. Immunoaffinity purification of the human multisubunit transcription factor IIH. J. Biol. Chem. 273, 7134–7140 (1998).
Aoyagi, Y. et al. Semisynthesis of C-ring modified triptolide analogues and their cytotoxic activities. Bioorg. Med. Chem. Lett. 16, 1947–1949 (2006).
Aoyagi, Y. et al. Fluorination of triptolide and its analogues and their cytotoxicity. Bioorg. Med. Chem. Lett. 18, 2459–2463 (2008).
Ning, L. et al. Cytotoxic biotransformed products from triptonide by Aspergillus niger. Planta Med. 69, 804–808 (2003).
Li, Z. et al. Design and synthesis of novel C14-hydroxyl substituted triptolide derivatives as potential selective antitumor agents. J. Med. Chem. 52, 5115–5123 (2009).
Kim, T.K., Ebright, R.H. & Reinberg, D. Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288, 1418–1422 (2000).
Kupchan, S.M. & Schubert, R.M. Selective alkylation: a biomimetic reaction of the antileukemic triptolides? Science 185, 791–793 (1974).
Matsui, Y. et al. Cancer-specific enhancement of cisplatin-induced cytotoxicity with triptolide through an interaction of inactivated glycogen synthase kinase-3beta with p53. Oncogene 27, 4603–4614 (2008).
Fidler, J.M. et al. PG490–88, a derivative of triptolide, causes tumor regression and sensitizes tumors to chemotherapy. Mol. Cancer Ther. 2, 855–862 (2003).
Dignam, J.D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).
Pugh, B.F. Preparation of HeLa nuclear extracts. Methods Mol. Biol. 37, 349–357 (1995).
Miesfeld, R. & Arnheim, N. Identification of the in vivo and in vitro origin of transcription in human rDNA. Nucleic Acids Res. 10, 3933–3949 (1982).
Sisodia, S.S., Sollner-Webb, B. & Cleveland, D.W. Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation. Mol. Cell. Biol. 7, 3602–3612 (1987).
Yakovchuk, P., Gilman, B., Goodrich, J.A. & Kugel, J.F. RNA polymerase II and TAFs undergo a slow isomerization after the polymerase is recruited to promoter-bound TFIID. J. Mol. Biol. 397, 57–68 (2010).
Mason, T.M., Smeaton, M.B., Cheung, J.C., Hanakahi, L.A. & Miller, P.S. End modification of a linear DNA duplex enhances NER-mediated excision of an internal Pt(II)-lesion. Bioconjug. Chem. 19, 1064–1070 (2008).
Smeaton, M.B., Miller, P.S., Ketner, G. & Hanakahi, L.A. Small-scale extracts for the study of nucleotide excision repair and non-homologous end joining. Nucleic Acids Res. 35, e152 (2007).
Conaway, R.C. & Conaway, J.W. An RNA polymerase II transcription factor has an associated DNA-dependent ATPase (dATPase) activity strongly stimulated by the TATA region of promoters. Proc. Natl. Acad. Sci. USA 86, 7356–7360 (1989).
Schaeffer, L. et al. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 13, 2388–2392 (1994).
Acknowledgements
This work was supported by discretionary funds (J.O.L.). We are grateful to A. Gnatt (University of Maryland) for a kind gift of purified RNAPII and B. Sollner-Webb (Johns Hopkins University) for plasmids. We thank D. Yang for earlier support of this project. We thank P. Cole, J. Corden, J. Stivers and members of the Liu lab for helpful suggestions.
Author information
Authors and Affiliations
Contributions
D.V.T., J.A.G., P.S.M. and J.O.L. designed the experiments. D.V.T., B.G., Q.-L.H., S.B., W.-K.L. and M.S. performed the experiments. W.-K.L., A.L.D., P.S.M., J.F.K., Y.D. and J.A.G. contributed reagents. D.V.T. and J.O.L. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Methods and Supplementary Figures 1–14. (PDF 6290 kb)
Rights and permissions
About this article
Cite this article
Titov, D., Gilman, B., He, QL. et al. XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat Chem Biol 7, 182–188 (2011). https://doi.org/10.1038/nchembio.522
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchembio.522
This article is cited by
-
Prediction of histone post-translational modification patterns based on nascent transcription data
Nature Genetics (2022)
-
HIV cure strategies: which ones are appropriate for Africa?
Cellular and Molecular Life Sciences (2022)
-
Incorporation of CENP-A/CID into centromeres during early Drosophila embryogenesis does not require RNA polymerase II–mediated transcription
Chromosoma (2022)
-
Promoter G-quadruplex folding precedes transcription and is controlled by chromatin
Genome Biology (2021)
-
Rationale for MYC imaging and targeting in pancreatic cancer
EJNMMI Research (2021)