Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Sublancin is not a lantibiotic but an S-linked glycopeptide

Abstract

Sublancin is shown to be an S-linked glycopeptide containing a glucose attached to a cysteine residue, establishing a new post-translational modification. The activity of the S-glycosyl transferase was reconstituted in vitro, and the enzyme is shown to have relaxed substrate specificity, allowing the preparation of analogs of sublancin. Glycosylation is essential for its antimicrobial activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the structure of sublancin by tandem mass spectrometry.
Figure 2: In vitro reconstitution of SunS activity and sublancin antimicrobial activity.

Similar content being viewed by others

References

  1. Oman, T.J. & van der Donk, W.A. Nat. Chem. Biol. 6, 9–18 (2010).

    Article  CAS  Google Scholar 

  2. Kunst, F. et al. Nature 390, 249–256 (1997).

    Article  CAS  Google Scholar 

  3. Hemphill, H.E., Gage, I., Zahler, S.A. & Korman, R.Z. Can. J. Microbiol. 26, 1328–1333 (1980).

    Article  CAS  Google Scholar 

  4. Paik, S.H., Chakicherla, A. & Hansen, J.N. J. Biol. Chem. 273, 23134–23142 (1998).

    Article  CAS  Google Scholar 

  5. Willey, J.M. & van der Donk, W.A. Annu. Rev. Microbiol. 61, 477–501 (2007).

    Article  CAS  Google Scholar 

  6. Siezen, R.J., Kuipers, O.P. & de Vos, W.M. Antonie Van Leeuwenhoek 69, 171–184 (1996).

    Article  CAS  Google Scholar 

  7. Kodani, S. et al. Proc. Natl. Acad. Sci. USA 101, 11448–11453 (2004).

    Article  CAS  Google Scholar 

  8. Goto, Y. et al. PLoS Biol. 8, e1000339 (2010).

    Article  Google Scholar 

  9. McIntosh, J.A., Donia, M.S. & Schmidt, E.W. Nat. Prod. Rep. 26, 537–559 (2009).

    Article  CAS  Google Scholar 

  10. Lote, C.J. & Weiss, J.B. FEBS Lett. 16, 81–85 (1971).

    Article  CAS  Google Scholar 

  11. Dorenbos, R. et al. J. Biol. Chem. 277, 16682–16688 (2002).

    Article  CAS  Google Scholar 

  12. Dubois, J.Y. et al. Antimicrob. Agents Chemother. 53, 651–661 (2009).

    Article  CAS  Google Scholar 

  13. Lairson, L.L., Henrissat, B., Davies, G.J. & Withers, S.G. Annu. Rev. Biochem. 77, 521–555 (2008).

    Article  CAS  Google Scholar 

  14. Walsh, C.T. Post-translational Modification of Proteins: Expanding Nature's Inventory (Roberts & Company, Greenwood Village, Colorado, 2005).

  15. Baran, E. & Drabarek, S. Pol. J. Chem. 52, 941–946 (1978).

    CAS  Google Scholar 

  16. Jahn, M., Marles, J., Warren, R.A. & Withers, S.G. Angew. Chem. Int. Edn Engl. 42, 352–354 (2003).

    Article  CAS  Google Scholar 

  17. Driguez, H. ChemBioChem 2, 311–318 (2001).

    Article  CAS  Google Scholar 

  18. Cohen, S.B. & Halcomb, R.L. J. Am. Chem. Soc. 124, 2534–2543 (2002).

    Article  CAS  Google Scholar 

  19. Galonić, D.P., van der Donk, W.A. & Gin, D.Y. Chem.–Eur. J. 24, 5997–6006 (2003).

    Article  Google Scholar 

  20. Galonić, D.P., van der Donk, W.A. & Gin, D.Y. J. Am. Chem. Soc. 126, 12712–12713 (2004).

    Article  Google Scholar 

  21. Galonić, D.P., Ide, N.D., van der Donk, W.A. & Gin, D.Y. J. Am. Chem. Soc. 127, 7359–7369 (2005).

    Article  Google Scholar 

  22. Hili, R., Rai, V. & Yudin, A.K. J. Am. Chem. Soc. 132, 2889–2891 (2010).

    Article  CAS  Google Scholar 

  23. Blanchard, S. & Thorson, J.S. Curr. Opin. Chem. Biol. 10, 263–271 (2006).

    Article  CAS  Google Scholar 

  24. Thibodeaux, C.J., Melancon, C.E. & Liu, H.W. Nature 446, 1008–1016 (2007).

    Article  CAS  Google Scholar 

  25. Fuller, E. et al. FEBS J. 272, 1727–1738 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (GM58822 to W.A.v.d.D.) and a US National Institutes of Health Cellular and Molecular Biology Training Grant (T32 GM007283 to T.J.O.). X.N.O. was supported by the EXROP summer research program of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

T.J.O. performed mass spectrometric analyses and all biochemical assays shown, which were designed and analyzed by T.J.O. and W.A.v.d.D. J.M.B. performed NMR analysis. H.W. prepared and performed biochemical assays of the SunA mutant peptides. X.N.O. assisted with purification of sublancin and mass spectrometric analyses. T.J.O. and W.A.v.d.D. wrote the manuscript.

Corresponding author

Correspondence to Wilfred A van der Donk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–21 and Supplementary Table 1 (PDF 8959 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oman, T., Boettcher, J., Wang, H. et al. Sublancin is not a lantibiotic but an S-linked glycopeptide. Nat Chem Biol 7, 78–80 (2011). https://doi.org/10.1038/nchembio.509

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.509

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing