Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nox2 redox signaling maintains essential cell populations in the brain

Abstract

Reactive oxygen species (ROS) are conventionally classified as toxic consequences of aerobic life, and the brain is particularly susceptible to ROS-induced oxidative stress and damage owing to its high energy and oxygen demands. NADPH oxidases (Nox) are a widespread source of brain ROS implicated in seizures, stroke and neurodegeneration. A physiological role for ROS generation in normal brain function has not been established, despite the fact that mice and humans lacking functional Nox proteins have cognitive deficits. Using molecular imaging with Peroxyfluor-6 (PF6), a new selective fluorescent indicator for hydrogen peroxide (H2O2), we show that adult hippocampal stem/progenitor cells (AHPs) generate H2O2 through Nox2 to regulate intracellular growth signaling pathways, which in turn maintains their normal proliferation in vitro and in vivo. Our results challenge the traditional view that brain ROS are solely deleterious by demonstrating that controlled ROS chemistry is needed for maintaining specific cell populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectroscopic characterization and cell culture validation of PF6-AM.
Figure 2: Application of PF6 to demonstrate that AHPs produce H2O2 upon FGF-2 stimulation.
Figure 3: Cellular redox status affects AHP growth signaling.
Figure 4: Nox2 is essential for normal proliferation of AHPs in vitro and in vivo.
Figure 5: Model for the role of Nox2 in FGF-2 redox signaling in AHPs.

Similar content being viewed by others

References

  1. Floyd, R.A. Oxidative damage to behavior during aging. Science 254, 1597 (1991).

    Article  CAS  Google Scholar 

  2. Harman, D. The aging process. Proc. Natl. Acad. Sci. USA 78, 7124–7128 (1981).

    Article  CAS  Google Scholar 

  3. Andersen, J.K. Oxidative stress in neurodegeneration: cause or consequence? Nat. Med. 10, S18–S25 (2004).

    Article  Google Scholar 

  4. Bedard, K. & Krause, K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313 (2007).

    Article  CAS  Google Scholar 

  5. Lambeth, J.D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).

    Article  CAS  Google Scholar 

  6. Geiszt, M., Kopp, J.B., Várnai, P. & Leto, T.L. Identification of renox, an NAD(P)H oxidase in kidney. Proc. Natl. Acad. Sci. USA 97, 8010–8014 (2000).

    Article  CAS  Google Scholar 

  7. Suh, Y.A. et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 79–82 (1999).

    Article  CAS  Google Scholar 

  8. Sundaresan, M., Yu, Z.X., Ferrans, V.J., Irani, K. & Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299 (1995).

    Article  CAS  Google Scholar 

  9. Rhee, S.G. H2O2, a necessary evil for cell signaling. Science 312, 1882–1883 (2006).

    Article  Google Scholar 

  10. D'Autréaux, B. & Toledano, M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).

    Article  Google Scholar 

  11. Poole, L.B. & Nelson, K.J. Discovering mechanisms of signaling-mediated cysteine oxidation. Curr. Opin. Chem. Biol. 12, 18–24 (2008).

    Article  CAS  Google Scholar 

  12. Woo, H.A. et al. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell 140, 517–528 (2010).

    Article  CAS  Google Scholar 

  13. Niethammer, P., Grabher, C., Look, A.T. & Mitchison, T.J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999 (2009).

    Article  CAS  Google Scholar 

  14. Paulsen, C.E. & Carroll, K.S. Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem. Biol. 5, 47–62 (2010).

    Article  CAS  Google Scholar 

  15. Miller, E.W., Dickinson, B.C. & Chang, C.J. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. USA 107, 15681–15686 (2010).

    Article  CAS  Google Scholar 

  16. Walder, C.E. et al. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28, 2252–2258 (1997).

    Article  CAS  Google Scholar 

  17. Park, L., Anrather, J., Girouard, H., Zhou, P. & Iadecola, C. Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J. Cereb. Blood Flow Metab. 27, 1908–1918 (2007).

    Article  CAS  Google Scholar 

  18. Behrens, M.M. et al. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318, 1645–1647 (2007).

    Article  CAS  Google Scholar 

  19. Park, L. et al. Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc. Natl. Acad. Sci. USA 105, 1347–1352 (2008).

    Article  CAS  Google Scholar 

  20. Zhang, W. et al. Neuroprotective effect of dextromethorphan in the MPTP Parkinson's disease model: role of NADPH oxidase. FASEB J. 18, 589–591 (2004).

    Article  CAS  Google Scholar 

  21. Sorce, S. & Krause, K.H. NOX enzymes in the central nervous system: from signaling to disease. Antioxid. Redox Signal. 11, 2481–2504 (2009).

    Article  CAS  Google Scholar 

  22. Pao, M. et al. Cognitive function in patients with Chronic Granulomatous Disease: a preliminary report. Psychosomatics 45, 230–234 (2004).

    Article  Google Scholar 

  23. Kishida, K.T. et al. Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol. Cell. Biol. 26, 5908–5920 (2006).

    Article  CAS  Google Scholar 

  24. Zhao, C., Deng, W. & Gage, F.H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).

    Article  CAS  Google Scholar 

  25. Palmer, T.D., Markakis, E.A., Willhoite, A.R., Safar, F. & Gage, F.H. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 19, 8487–8497 (1999).

    Article  CAS  Google Scholar 

  26. Winterbourn, C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286 (2008).

    Article  CAS  Google Scholar 

  27. Barnham, K.J., Masters, C.L. & Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3, 205–214 (2004).

    Article  CAS  Google Scholar 

  28. Miller, E.W. & Chang, C.J. Fluorescent probes for nitric oxide and hydrogen peroxide in cell signaling. Curr. Opin. Chem. Biol. 11, 620–625 (2007).

    Article  CAS  Google Scholar 

  29. Chang, M.C.Y., Pralle, A., Isacoff, E.Y. & Chang, C.J. A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J. Am. Chem. Soc. 126, 15392–15393 (2004).

    Article  CAS  Google Scholar 

  30. Miller, E.W., Albers, A.E., Pralle, A., Isacoff, E.Y. & Chang, C.J. Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J. Am. Chem. Soc. 127, 16652–16659 (2005).

    Article  CAS  Google Scholar 

  31. Albers, A.E., Okreglak, V.S. & Chang, C.J. A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide. J. Am. Chem. Soc. 128, 9640–9641 (2006).

    Article  CAS  Google Scholar 

  32. Albers, A.E., Dickinson, B.C., Miller, E.W. & Chang, C.J. A red-emitting naphthofluorescein-based fluorescent probe for selective detection of hydrogen peroxide in living cells. Bioorg. Med. Chem. Lett. 18, 5948–5950 (2008).

    Article  CAS  Google Scholar 

  33. Srikun, D., Albers, A.E., Nam, C.I., Ivarone, A.T. & Chang, C.J. Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-tag protein labeling. J. Am. Chem. Soc. 132, 4455–4465 (2010).

    Article  CAS  Google Scholar 

  34. Dickinson, B.C. & Chang, C.J. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J. Am. Chem. Soc. 130, 9638–9639 (2008).

    Article  CAS  Google Scholar 

  35. Dickinson, B.C., Srikun, D. & Chang, C.J. Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr. Opin. Chem. Biol. 14, 50–56 (2010).

    Article  CAS  Google Scholar 

  36. Srikun, D., Miller, E.W., Domaille, D.W. & Chang, C.J. An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. J. Am. Chem. Soc. 130, 4596–4597 (2008).

    Article  CAS  Google Scholar 

  37. Miller, E.W., Tulyathan, O., Isacoff, E.Y. & Chang, C.J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nat. Chem. Biol. 3, 263–267 (2007).

    Article  CAS  Google Scholar 

  38. Dickinson, B.C., Huynh, C. & Chang, C.J. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J. Am. Chem. Soc. 132, 5906–5915 (2010).

    Article  CAS  Google Scholar 

  39. Tsien, R.Y. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290, 527–528 (1981).

    Article  CAS  Google Scholar 

  40. Izumi, S., Urano, Y., Hanaoka, K., Terai, T. & Nagano, T. A simple and effective strategy to increase the sensitivity of fluorescence probes in living cells. J. Am. Chem. Soc. 131, 10189–10200 (2009).

    Article  CAS  Google Scholar 

  41. Pluth, M.D., McQuade, L.E. & Lippard, S.J. Cell-trappable fluorescent probes for nitric oxide visualization in living cells. Org. Lett. 12, 2318–2321 (2010).

    Article  CAS  Google Scholar 

  42. McQuade, L.E. & Lippard, S.J. Cell-trappable quinoline-derivatized fluoresceins for selective and reversible biological Zn(ii) detection. Inorg. Chem. 49, 9535–9545 (2010).

    Article  CAS  Google Scholar 

  43. McQuade, L.E. et al. Visualization of nitric oxide production in the mouse main olfactory bulb by a cell-trappable copper(II) fluorescent probe. Proc. Natl. Acad. Sci. USA 107, 8525–8530 (2010).

    Article  CAS  Google Scholar 

  44. Hempel, S.L., Buettner, G.R., O′Malley, Y.Q., Wessels, D.A. & Flaherty, D.M. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic. Biol. Med. 27, 146–159 (1999).

    Article  CAS  Google Scholar 

  45. Robinson, K.M. et al. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc. Natl. Acad. Sci. USA 103, 15038–15043 (2006).

    Article  CAS  Google Scholar 

  46. Prozorovski, T. et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat. Cell Biol. 10, 385–394 (2008).

    Article  CAS  Google Scholar 

  47. Kwon, J. et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci. USA 101, 16419–16424 (2004).

    Article  CAS  Google Scholar 

  48. Peltier, J., O′Neill, A. & Schaffer, D.V. PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev. Neurobiol. 67, 1348–1361 (2007).

    Article  CAS  Google Scholar 

  49. Lee, S.R. et al. Reversible inactivation of the tumor suppressor PTEN by H2O2. J. Biol. Chem. 277, 20336–20342 (2002).

    Article  CAS  Google Scholar 

  50. Suh, H. et al. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1, 515–528 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Packard and Sloan Foundations (C.J.C.), the UC Berkeley Hellman Faculty Fund (C.J.C.), Amgen, Astra Zeneca and Novartis (C.J.C.) and the US National Institutes of Health (GM 79465 to C.J.C. and EB 007295 to D.V.S.) for providing funding for this work. C.J.C. is an Investigator with the Howard Hughes Medical Institute. B.C.D. was partially supported by a Chemical Biology Training Grant from the US National Institutes of Health. (T32 GM066698). J.P. was partially supported by a training grant fellowship from the California Institute for Regenerative Medicine (T1-00007). We thank M. Quinn (Montana State University) for generous donation of Nox2 antibodies and T. Kawahara for helpful advice.

Author information

Authors and Affiliations

Authors

Contributions

B.C.D. synthesized all compounds in the paper and performed all analytical measurements, imaging assays and cell culture and mouse experiments. J.P. collaborated on cell culture, RT-PCR and mouse experiments. D.S. helped with mouse experiments. C.J.C., D.V.S., B.C.D. and J.P. designed experimental strategies. C.J.C. and B.C.D. wrote the paper with input from all coauthors.

Corresponding authors

Correspondence to David V Schaffer or Christopher J Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–9 (PDF 1428 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickinson, B., Peltier, J., Stone, D. et al. Nox2 redox signaling maintains essential cell populations in the brain. Nat Chem Biol 7, 106–112 (2011). https://doi.org/10.1038/nchembio.497

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.497

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing