Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural basis for regulation of the Crk signaling protein by a proline switch

Abstract

Proline switches, controlled by cis-trans isomerization, have emerged as a particularly effective regulatory mechanism in a wide range of biological processes. Here we report the structures of both the cis and trans conformers of a proline switch in the Crk signaling protein. Proline isomerization toggles Crk between two conformations: an autoinhibitory conformation, stabilized by the intramolecular association of two tandem SH3 domains in the cis form, and an uninhibited, activated conformation promoted by the trans form. In addition to acting as a structural switch, the heterogeneous proline recruits cyclophilin A, which accelerates the interconversion rate between the isomers, thereby regulating the kinetics of Crk activation. The data provide atomic insight into the mechanisms that underpin the functionality of this binary switch and elucidate its remarkable efficiency. The results also reveal new SH3 binding surfaces, highlighting the binding versatility and expanding the noncanonical ligand repertoire of this important signaling domain.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Domain organization of Crk.
Figure 2: Structural characterization of the trans and cis Crk l-SH3C conformers.
Figure 3: Structural comparison of the trans and cis isomers.
Figure 4: Dynamic characterization of the trans and cis isomers.
Figure 5: Structural characterization of CrkSLS in the closed, autoinhibited conformation.
Figure 6: Structural basis for conformer-specific SH3N-SH3C interaction in CrkSLS.
Figure 7: Mechanistic basis for the regulation of Crk activity.

Accession codes

Accessions

Protein Data Bank

References

  1. Birge, R.B., Kalodimos, C., Inagaki, F. & Tanaka, S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun. Signal. 7, 13 (2009).

    Article  Google Scholar 

  2. Feller, S.M. Crk family adaptors-signalling complex formation and biological roles. Oncogene 20, 6348–6371 (2001).

    Article  CAS  Google Scholar 

  3. Miller, C.T. et al. Increased C–CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene 22, 7950–7957 (2003).

    Article  Google Scholar 

  4. Nishihara, H. et al. Molecular and immunohistochemical analysis of signaling adaptor protein Crk in human cancers. Cancer Lett. 180, 55–61 (2002).

    Article  CAS  Google Scholar 

  5. Linghu, H. et al. Involvement of adaptor protein Crk in malignant feature of human ovarian cancer cell line MCAS. Oncogene 25, 3547–3556 (2006).

    Article  CAS  Google Scholar 

  6. Shishido, T. et al. Crk family adaptor proteins trans-activate c-Abl kinase. Genes Cells 6, 431–440 (2001).

    Article  CAS  Google Scholar 

  7. Sirvent, A., Benistant, C. & Roche, S. Cytoplasmic signalling by the c-Abl tyrosine kinase in normal and cancer cells. Biol. Cell 100, 617–631 (2008).

    Article  CAS  Google Scholar 

  8. Feller, S.M., Knudsen, B. & Hanafusa, H. c-Abl kinase regulates the protein binding activity of c-Crk. EMBO J. 13, 2341–2351 (1994).

    Article  CAS  Google Scholar 

  9. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    Article  CAS  Google Scholar 

  10. Wu, X. et al. Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk. Structure 3, 215–226 (1995).

    Article  CAS  Google Scholar 

  11. Sarkar, P., Reichman, C., Saleh, T., Birge, R.B. & Kalodimos, C.G. Proline cis-trans isomerization controls autoinhibition of a signaling protein. Mol. Cell 25, 413–426 (2007).

    Article  CAS  Google Scholar 

  12. Kobashigawa, Y. et al. Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Nat. Struct. Mol. Biol. 14, 503–510 (2007).

    Article  CAS  Google Scholar 

  13. Reichman, C. et al. Transactivation of Abl by the Crk II adapter protein requires a PNAY sequence in the Crk C-terminal SH3 domain. Oncogene 24, 8187–8199 (2005).

    Article  CAS  Google Scholar 

  14. Akakura, S. et al. C-terminal SH3 domain of CrkII regulates the assembly and function of the DOCK180/ELMO Rac-GEF. J. Cell. Physiol. 204, 344–351 (2005).

    Article  CAS  Google Scholar 

  15. Kizaka-Kondoh, S., Matsuda, M. & Okayama, H. CrkII signals from epidermal growth factor receptor to Ras. Proc. Natl. Acad. Sci. USA 93, 12177–12182 (1996).

    Article  CAS  Google Scholar 

  16. Ogawa, S. et al. The C-terminal SH3 domain of the mouse c-Crk protein negatively regulates tyrosine-phosphorylation of Crk associated p130 in rat 3Y1 cells. Oncogene 9, 1669–1678 (1994).

    CAS  PubMed  Google Scholar 

  17. Nicholson, L.K. & Lu, K.P. Prolyl cis-trans Isomerization as a molecular timer in Crk signaling. Mol. Cell 25, 483–485 (2007).

    Article  CAS  Google Scholar 

  18. Isakov, N. A new twist to adaptor proteins contributes to regulation of lymphocyte cell signaling. Trends Immunol. 29, 388–396 (2008).

    Article  CAS  Google Scholar 

  19. Lu, K.P., Finn, G., Lee, T.H. & Nicholson, L.K. Prolyl cis-trans isomerization as a molecular timer. Nat. Chem. Biol. 3, 619–629 (2007).

    Article  CAS  Google Scholar 

  20. Andreotti, A.H. Native state proline isomerization: an intrinsic molecular switch. Biochemistry 42, 9515–9524 (2003).

    Article  CAS  Google Scholar 

  21. Göthel, S.F. & Marahiel, M.A. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell. Mol. Life Sci. 55, 423–436 (1999).

    Article  Google Scholar 

  22. Brazin, K.N., Mallis, R.J., Fulton, D.B. & Andreotti, A.H. Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Proc. Natl. Acad. Sci. USA 99, 1899–1904 (2002).

    Article  CAS  Google Scholar 

  23. Wulf, G., Finn, G., Suizu, F. & Lu, K.P. Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat. Cell Biol. 7, 435–441 (2005).

    Article  CAS  Google Scholar 

  24. Pastorino, L. et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 440, 528–534 (2006).

    Article  CAS  Google Scholar 

  25. Calabrese, M.F., Eakin, C.M., Wang, J.M. & Miranker, A.D. A regulatable switch mediates self-association in an immunoglobulin fold. Nat. Struct. Mol. Biol. 15, 965–971 (2008).

    Article  CAS  Google Scholar 

  26. Lummis, S.C. et al. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438, 248–252 (2005).

    Article  CAS  Google Scholar 

  27. Nelson, C.J., Santos-Rosa, H. & Kouzarides, T. Proline isomerization of histone h3 regulates lysine methylation and gene expression. Cell 126, 905–916 (2006).

    Article  CAS  Google Scholar 

  28. Wang, Z. et al. Pro isomerization in MLL1 PHD3-bromo cassette connects H3K4me readout to CyP33 and HDAC-mediated repression. Cell 141, 1183–1194 (2010).

    Article  CAS  Google Scholar 

  29. Eckert, B., Martin, A., Balbach, J. & Schmid, F.X. Prolyl isomerization as a molecular timer in phage infection. Nat. Struct. Mol. Biol. 12, 619–623 (2005).

    Article  CAS  Google Scholar 

  30. Franke, E.K., Yuan, H.E. & Luban, J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372, 359–362 (1994).

    Article  CAS  Google Scholar 

  31. OuYang, B., Pochapsky, S.S., Dang, M. & Pochapsky, T.C. A functional proline switch in cytochrome P450cam. Structure 16, 916–923 (2008).

    Article  CAS  Google Scholar 

  32. Vogel, M., Bukau, B. & Mayer, M.P. Allosteric regulation of Hsp70 chaperones by a proline switch. Mol. Cell 21, 359–367 (2006).

    Article  CAS  Google Scholar 

  33. Severin, A., Joseph, R.E., Boyken, S., Fulton, D.B. & Andreotti, A.H. Proline isomerization preorganizes the Itk SH2 domain for binding to the Itk SH3 domain. J. Mol. Biol. 387, 726–743 (2009).

    Article  CAS  Google Scholar 

  34. Muralidharan, V. et al. Solution Structure and folding characteristics of the C-terminal SH3 domain of c-Crk-II. Biochemistry 45, 8874–8884 (2006).

    Article  CAS  Google Scholar 

  35. Palmer, A.G. III. NMR characterization of the dynamics of biomacromolecules. Chem. Rev. 104, 3623–3640 (2004).

    Article  CAS  Google Scholar 

  36. Mittermaier, A. & Kay, L.E. New tools provide new insights in NMR studies of protein dynamics. Science 312, 224–228 (2006).

    Article  CAS  Google Scholar 

  37. Knudsen, B.S. et al. Affinity and specificity requirements for the first Src homology 3 domain of the Crk proteins. EMBO J. 14, 2191–2198 (1995).

    Article  CAS  Google Scholar 

  38. Ren, R., Ye, Z.S. & Baltimore, D. Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev. 8, 783–795 (1994).

    Article  CAS  Google Scholar 

  39. Mallis, R.J., Brazin, K.N., Fulton, D.B. & Andreotti, A.H. Structural characterization of a proline-driven conformational switch within the Itk SH2 domain. Nat. Struct. Biol. 9, 900–905 (2002).

    Article  CAS  Google Scholar 

  40. Rosen, M.K. et al. Direct demonstration of an intramolecular SH2-phosphotyrosine interaction in the Crk protein. Nature 374, 477–479 (1995).

    Article  CAS  Google Scholar 

  41. Donaldson, L.W., Gish, G., Pawson, T., Kay, L.E. & Forman-Kay, J.D. Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide. Proc. Natl. Acad. Sci. USA 99, 14053–14058 (2002).

    Article  CAS  Google Scholar 

  42. Mayer, B.J., Hamaguchi, M. & Hanafusa, H. A novel viral oncogene with structural similarity to phospholipase C. Nature 332, 272–275 (1988).

    Article  CAS  Google Scholar 

  43. Zvara, A. et al. Activation of the focal adhesion kinase signaling pathway by structural alterations in the carboxyl-terminal region of c-Crk II. Oncogene 20, 951–961 (2001).

    Article  CAS  Google Scholar 

  44. Li, S.S. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem. J. 390, 641–653 (2005).

    Article  CAS  Google Scholar 

  45. Vaynberg, J. et al. Structure of an ultraweak protein-protein complex and its crucial role in regulation of cell morphology and motility. Mol. Cell 17, 513–523 (2005).

    Article  CAS  Google Scholar 

  46. Bax, A. & Grishaev, A. Weak alignment NMR: a hawk-eyed view of biomolecular structure. Curr. Opin. Struct. Biol. 15, 563–570 (2005).

    Article  CAS  Google Scholar 

  47. Popovych, N., Tzeng, S.R., Tonelli, M., Ebright, R.H. & Kalodimos, C.G. Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc. Natl. Acad. Sci. USA 106, 6927–6932 (2009).

    Article  CAS  Google Scholar 

  48. Schwieters, C.D., Kuszewski, J.J. & Clore, M.G. Using Xplor–NIH for NMR molecular structure determination. Prog. Nucl. Magn. Reson. Spectrosc. 48, 47–62 (2006).

    Article  CAS  Google Scholar 

  49. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  50. Tzeng, S.R. & Kalodimos, C.G. Dynamic activation of an allosteric regulatory protein. Nature 462, 368–372 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (GM80308 to C.G.K.).

Author information

Authors and Affiliations

Authors

Contributions

C.G.K. designed the research; P.S., T.S. and S.-R.T. performed the research; P.S., T.S., S.-R.T. and C.G.K. analyzed data; R.B.B. contributed reagents; and C.G.K. wrote the manuscript.

Corresponding author

Correspondence to Charalampos G Kalodimos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–12 and Supplementary Table 1 (PDF 6967 kb)

Supplementary Movie

Crk cis-trans isomerization (MOV 1900 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sarkar, P., Saleh, T., Tzeng, SR. et al. Structural basis for regulation of the Crk signaling protein by a proline switch. Nat Chem Biol 7, 51–57 (2011). https://doi.org/10.1038/nchembio.494

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.494

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing