Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selective irreversible inhibition of a protease by targeting a noncatalytic cysteine

Abstract

Designing selective inhibitors of proteases has proven problematic, in part because pharmacophores that confer potency exploit the conserved catalytic apparatus. We developed a fundamentally different approach by designing irreversible inhibitors that target noncatalytic cysteines that are structurally unique to a target in a protein family. We have successfully applied this approach to the important therapeutic target HCV protease, which has broad implications for the design of other selective protease inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Compounds rationally designed to covalently bond to a conserved HCVP cysteine.
Figure 2: Covalent NS3/4A inhibitor selectively modifies the target cysteine and gains potency through covalent modification.
Figure 3: Sustained inhibition of NS3/4A self-cleavage activity correlates with target occupancy, and the covalent compound shows a high degree of selectivity in cell lysates.

Accession codes

Accessions

Protein Data Bank

References

  1. Turk, B. Nat. Rev. Drug Discov. 5, 785–799 (2006).

    Article  CAS  Google Scholar 

  2. Puente, X.S., Sanchez, L.M., Overall, C.M. & Lopez-Otin, C. Nat. Rev. Genet. 4, 544–558 (2003).

    Article  CAS  Google Scholar 

  3. Smith, A.J., Zhang, X., Leach, A.G. & Houk, K.N. J. Med. Chem. 52, 225–233 (2009).

    Article  CAS  Google Scholar 

  4. Robertson, J.G. Biochemistry 44, 5561–5571 (2005).

    Article  CAS  Google Scholar 

  5. Bartenschlager, R. & Sparacio, S. Virus Res. 127, 195–207 (2007).

    Article  CAS  Google Scholar 

  6. Perni, R.B. et al. Antimicrob. Agents Chemother. 50, 899–909 (2006).

    Article  CAS  Google Scholar 

  7. Lin, C., Kwong, A.D. & Perni, R.B. Infect. Disord. Drug Targets 6, 3–16 (2006).

    Article  CAS  Google Scholar 

  8. McHutchison, J.G. et al. N. Engl. J. Med. 360, 1827–1838 (2009).

    Article  CAS  Google Scholar 

  9. Stauber, R.E. & Kessler, H.H. Drugs 68, 1347–1359 (2008).

    Article  CAS  Google Scholar 

  10. Njoroge, F.G., Chen, K.X., Shih, N.Y. & Piwinski, J.J. Acc. Chem. Res. 41, 50–59 (2008).

    Article  CAS  Google Scholar 

  11. Venkatraman, S. et al. J. Med. Chem. 49, 6074–6086 (2006).

    Article  CAS  Google Scholar 

  12. Lamarre, D. et al. Nature 426, 186–189 (2003).

    Article  CAS  Google Scholar 

  13. Lin, T.I. et al. Antimicrob. Agents Chemother. 53, 1377–1385 (2009).

    Article  CAS  Google Scholar 

  14. Seiwert, S.D. et al. Antimicrob. Agents Chemother. 52, 4432–4441 (2008).

    Article  CAS  Google Scholar 

  15. McCauley, J.A. et al. J. Med. Chem. 53, 2443–2463 (2010).

    Article  CAS  Google Scholar 

  16. Liverton, N.J. et al. Antimicrob. Agents Chemother. 54, 305–311 (2010).

    Article  CAS  Google Scholar 

  17. Ling, C. in Hepatitis C Viruses: Genomes and Molecular Biology. (ed. Tan, S.-L.) 163–206 (Horizon Biosciences, 2006).

  18. Campbell, J.A. & Good, A.C. World Intellectual Property Organization Patent, WO 2003053349 A2 (2003).

  19. Thompson, A.J. & McHutchison, J.G. J. Viral Hepat. 16, 377–387 (2009).

    Article  CAS  Google Scholar 

  20. Kou, Y.H., Chang, M.F., Wang, Y.M., Hung, T.M. & Chang, S.C. J. Virol. 81, 7999–8008 (2007).

    Article  CAS  Google Scholar 

  21. Singh, J., Petter, R.C. & Kluge, A.F. Curr. Opin. Chem. Biol. 14, 475–480 (2010).

    Article  CAS  Google Scholar 

  22. Potashman, M.H. & Duggan, M.E. J. Med. Chem. 52, 1231–1246 (2009).

    Article  CAS  Google Scholar 

  23. Hagel, M. et al. Reviews in Antiviral Therapy & Infectious Diseases 5, 15 (2009).

    Google Scholar 

Download references

Acknowledgements

We thank the following for critical reading of the manuscript: A. Whitty, B. Lindenbach, S. Witowski and N. Mahanthappa. We also thank R. Bartenschlager for helpful conversations. We thank Proteros Biostructures for help with X-ray crystallographic studies and A. Prasad for help with figures.

Author information

Authors and Affiliations

Authors

Contributions

M.H., T.S.M., M.P.S., M.T.L., H.B., R.M.K. and P.C. performed experiments; D.N., L.Q., J.S. and R.C.P. designed and generated chemical compounds; Z.Z. and J.S. performed molecular modeling; M.N., W.F.W., R.C.P. and J.S. supervised the project; M.H., M.N., R.C.P. and J.S. wrote the manuscript.

Corresponding author

Correspondence to Juswinder Singh.

Ethics declarations

Competing interests

All authors are employees and shareholders of Avila Therapeutics, except H.B. who is a former employee.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Schemes 1–4, Supplementary Figures 1–11 and Supplementary Tables 1–3 (PDF 1372 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hagel, M., Niu, D., St Martin, T. et al. Selective irreversible inhibition of a protease by targeting a noncatalytic cysteine. Nat Chem Biol 7, 22–24 (2011). https://doi.org/10.1038/nchembio.492

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.492

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing