Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate

This article has been updated


The aromatic amino acids L-phenylalanine and L-tyrosine and their plant-derived natural products are essential in human and plant metabolism and physiology. Here we identified Petunia hybrida and Arabidopsis thaliana genes encoding prephenate aminotransferases (PPA-ATs), thus completing the identification of the genes involved in phenylalanine and tyrosine biosyntheses. Biochemical and genetic characterization of enzymes showed that PPA-AT directs carbon flux from prephenate toward arogenate, making the arogenate pathway predominant in plant phenylalanine biosynthesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Effects of PPA-AT downregulation on the shikimate, phenylalanine and tyrosine pathways.
Figure 2: PPA-AT converts prephenate to arogenate.

Change history

  • 10 December 2010

    In the version of this article initially published, the word “prephenate” was inadvertently switched to “phenylalanine” in the eighth paragraph. The error has been corrected in the HTML and PDF versions of the article.


  1. 1

    Boerjan, W., Ralph, J. & Baucher, M. Annu. Rev. Plant Biol. 54, 519–546 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Kutchan, T.M. in The Alkaloids, Vol. 50 (ed. Cordell, G.) 257–316 (Academic Press, San Diego, 1998).

  3. 3

    Bramley, P.M. et al. J. Sci. Food Agric. 80, 913–938 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Siehl, D.L. in Plant Amino Acids: Biochemistry and Biotechnology (ed. Singh, B.) 171–204 (CRC Press, 1999).

  5. 5

    Rippert, P. & Matringe, M. Eur. J. Biochem. 269, 4753–4761 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Cho, M.H. et al. J. Biol. Chem. 282, 30827–30835 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Maeda, H. et al. Plant Cell 22, 832–849 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Yamada, T. et al. Plant Cell 20, 1316–1329 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Rubin, J.L. & Jensen, R.A. Plant Physiol. 64, 727–734 (1979).

    CAS  Article  Google Scholar 

  10. 10

    Siehl, D.L., Singh, B.K. & Conn, E.E. Plant Physiol. 81, 711–713 (1986).

    CAS  Article  Google Scholar 

  11. 11

    Bonner, C.A. & Jensen, R.A. Arch. Biochem. Biophys. 238, 237–246 (1985).

    CAS  Article  Google Scholar 

  12. 12

    Redkina, T.V., Uspenska, Z. & Kretovic, V. Biochemistry (Mosc.) 34, 247–256 (1969).

    Google Scholar 

  13. 13

    Siehl, D.L., Connelly, J.A. & Conn, E.E. Z. Naturfo. C. 41, 79–86 (1986).

    CAS  Article  Google Scholar 

  14. 14

    De-Eknamkul, W. & Ellis, B.E. Arch. Biochem. Biophys. 267, 87–94 (1988).

    CAS  Article  Google Scholar 

  15. 15

    Wightman, F. & Forest, J.C. Phytochemistry 17, 1455–1471 (1978).

    CAS  Article  Google Scholar 

  16. 16

    Obayashi, T., Hayashi, S., Saeki, M., Ohta, H. & Kinoshita, K. Nucleic Acids Res. 37, D987–D991 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Görlach, J. et al. Proc. Natl. Acad. Sci. USA 92, 3166–3170 (1995).

    Article  Google Scholar 

  18. 18

    de la Torre, F., De Santis, L., Suarez, M.F., Crespillo, R. & Canovas, F.M. Plant J. 46, 414–425 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Nobe, Y. et al. J. Biol. Chem. 273, 29554–29564 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Verdonk, J.C. et al. Phytochemistry 62, 997–1008 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Bickel, H. & Schultz, G. Phytochemistry 18, 498–499 (1979).

    CAS  Article  Google Scholar 

  22. 22

    Nakai, T. et al. Biochemistry 38, 2413–2424 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Zamir, L., Tiberio, R. & Jensen, R. Tetrahedr. Lett. 24, 2815–2818 (1983).

    CAS  Article  Google Scholar 

  24. 24

    Marino, G. et al. J. Biol. Chem. 263, 12305–12309 (1988).

    CAS  PubMed  Google Scholar 

  25. 25

    Fazel, A.M. & Jensen, R.A. J. Bacteriol. 138, 805–815 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank J. Zheng and C.M. Kish (Purdue University) for technical assistance in the quantitative real-time PCR experiments, G. Taguchi and E. Pichersky (University of Michigan) for the pLISG vector and N. Bonawitz, D. Rhodes (Purdue University) and members of Dudareva laboratory for critical reading of the manuscript. This work was supported by the US Agriculture and Food Research Initiative competitive grant no. 2010-65115-20385 from US Department of Agriculture National Institute of Food and Agriculture and by grant MCB-0615700 from the US National Science Foundation to N.D. H.M. was supported in part by the Japan Society for the Promotion of Science Postdoctoral Fellowship for Research Abroad.

Author information




H.M. and N.D. designed research; H.M. and H.Y. performed experiments; H.M., H.Y. and N.D. analyzed data; H.M. and N.D. wrote the paper. All authors read and edited the manuscript.

Corresponding author

Correspondence to Natalia Dudareva.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–9 and Supplementary Tables 1 & 2 (PDF 1032 kb)

Supplementary Data Set

Supplementary Data Set (TXT 40 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maeda, H., Yoo, H. & Dudareva, N. Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate. Nat Chem Biol 7, 19–21 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing