Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphate release in F1-ATPase catalytic cycle follows ADP release

Abstract

F1-ATPase is an ATP-driven rotary motor protein in which the γ-subunit rotates against the catalytic stator ring. Although the reaction scheme of F1 has mostly been revealed, the timing of inorganic phosphate (Pi) release remains controversial. Here we addressed this issue by verifying the reversibility of ATP hydrolysis on arrested F1 with magnetic tweezers. ATP hydrolysis was found to be essentially reversible, implying that Pi is released after the γ rotation and ADP release, although extremely slow Pi release was found at the ATP hydrolysis angle as an uncoupling side reaction. On the basis of this finding, we deduced the chemomechanical coupling scheme of F1. We found that the affinity for Pi was strongly angle dependent, implying a large contribution by Pi release to torque generation. These findings imply that under ATP synthesis conditions, Pi binds to an empty catalytic site, preventing solution ATP (though not ADP) from binding. Thus, this supports the concept of selective ADP binding for efficient ATP synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of Pi release in chemomechanical coupling of F1.
Figure 2: Reversibility of ATPγS hydrolysis and synthesis on F1(βE190D).
Figure 3: Reversibility of ATP hydrolysis and synthesis of β(E190D) in the hybrid F1.
Figure 4: Synthesis of ATPγS.
Figure 5: Equilibrium constant of Pi release and binding.
Figure 6: Site occupancy and reaction scheme.

Similar content being viewed by others

References

  1. Abrahams, J.P., Leslie, A.G., Lutter, R. & Walker, J.E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  Google Scholar 

  2. Boyer, P.D. The binding change mechanism for ATP synthase–some probabilities and possibilities. Biochim. Biophys. Acta 1140, 215–250 (1993).

    Article  CAS  Google Scholar 

  3. Itoh, H. et al. Mechanically driven ATP synthesis by F1-ATPase. Nature 427, 465–468 (2004).

    Article  CAS  Google Scholar 

  4. Rondelez, Y. et al. Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433, 773–777 (2005).

    Article  CAS  Google Scholar 

  5. Nishizaka, T. et al. Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat. Struct. Mol. Biol. 11, 142–148 (2004).

    Article  CAS  Google Scholar 

  6. Ohtsubo, M. et al. In vitro mutated β subunits from the F1-ATPase of the thermophilic bacterium, PS3, containing glutamine in place of glutamic acid in positions 190 or 201 assembles with the α and γ subunits to produce inactive complexes. Biochem. Biophys. Res. Commun. 146, 705–710 (1987).

    Article  CAS  Google Scholar 

  7. Park, M.Y., Omote, H., Maeda, M. & Futai, M. Conserved Glu-181 and Arg-182 residues of Escherichia coli H+-ATPase (ATP synthase) β subunit are essential for catalysis: properties of 33 mutants between β Glu-161 and β Lys-201 residues. J. Biochem. 116, 1139–1145 (1994).

    Article  CAS  Google Scholar 

  8. Senior, A.E., Nadanaciva, S. & Weber, J. The molecular mechanism of ATP synthesis by F1Fo-ATP synthase. Biochim. Biophys. Acta 1553, 188–211 (2002).

    Article  CAS  Google Scholar 

  9. Shimabukuro, K. et al. Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation. Proc. Natl. Acad. Sci. USA 100, 14731–14736 (2003).

    Article  CAS  Google Scholar 

  10. Ariga, T., Muneyuki, E. & Yoshida, M. F1-ATPase rotates by an asymmetric, sequential mechanism using all three catalytic subunits. Nat. Struct. Mol. Biol. 14, 841–846 (2007).

    Article  CAS  Google Scholar 

  11. Adachi, K. et al. Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130, 309–321 (2007).

    Article  CAS  Google Scholar 

  12. Watanabe, R., Iino, R., Shimabukuro, K., Yoshida, M. & Noji, H. Temperature-sensitive reaction intermediate of F1-ATPase. EMBO Rep. 9, 84–90 (2008).

    Article  CAS  Google Scholar 

  13. Kabaleeswaran, V., Puri, N., Walker, J.E., Leslie, A.G. & Mueller, D.M. Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase. EMBO J. 25, 5433–5442 (2006).

    Article  CAS  Google Scholar 

  14. Okuno, D. et al. Correlation between the conformational states of F1-ATPase as determined from its crystal structure and single-molecule rotation. Proc. Natl. Acad. Sci. USA 105, 20722–20727 (2008).

    Article  CAS  Google Scholar 

  15. Ahmad, Z. & Senior, A.E. Identification of phosphate binding residues of Escherichia coli ATP synthase. J. Bioenerg. Biomembr. 37, 437–440 (2005).

    Article  CAS  Google Scholar 

  16. Hirono-Hara, Y., Ishizuka, K., Kinosita, K. Jr., Yoshida, M. & Noji, H. Activation of pausing F1 motor by external force. Proc. Natl. Acad. Sci. USA 102, 4288–4293 (2005).

    Article  CAS  Google Scholar 

  17. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr. & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001).

    Article  CAS  Google Scholar 

  18. Grubmeyer, C., Cross, R.L. & Penefsky, H.S. Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate constants for elementary steps in catalysis at a single site. J. Biol. Chem. 257, 12092–12100 (1982).

    CAS  PubMed  Google Scholar 

  19. Enoki, S., Watanabe, R., Iino, R. & Noji, H. Single-molecule study on the temperature-sensitive reaction of F1-ATPase with a hybrid F1 carrying a single β(E190D). J. Biol. Chem. 284, 23169–23176 (2009).

    Article  CAS  Google Scholar 

  20. Bowler, M.W., Montgomery, M.G., Leslie, A.G. & Walker, J.E. How azide inhibits ATP hydrolysis by the F-ATPases. Proc. Natl. Acad. Sci. USA 103, 8646–8649 (2006).

    Article  CAS  Google Scholar 

  21. Kagawa, R., Montgomery, M.G., Braig, K., Leslie, A.G. & Walker, J.E. The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride. EMBO J. 23, 2734–2744 (2004).

    Article  CAS  Google Scholar 

  22. Menz, R.I., Walker, J.E. & Leslie, A.G. Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106, 331–341 (2001).

    Article  CAS  Google Scholar 

  23. Braig, K., Menz, R.I., Montgomery, M.G., Leslie, A.G. & Walker, J.E. Structure of bovine mitochondrial F1-ATPase inhibited by Mg2+ ADP and aluminium fluoride. Structure 8, 567–573 (2000).

    Article  CAS  Google Scholar 

  24. Shimo-Kon, R. et al. Chemo-mechanical coupling in F1-ATPase revealed by catalytic site occupancy during catalysis. Biophys. J. 98, 1227–1236 (2010).

    Article  CAS  Google Scholar 

  25. Weber, J., Bowman, C. & Senior, A.E. Specific tryptophan substitution in catalytic sites of Escherichia coli F1-ATPase allows differentiation between bound substrate ATP and product ADP in steady-state catalysis. J. Biol. Chem. 271, 18711–18718 (1996).

    Article  CAS  Google Scholar 

  26. Mao, H.Z. & Weber, J. Identification of the betaTP site in the x-ray structure of F1-ATPase as the high-affinity catalytic site. Proc. Natl. Acad. Sci. USA 104, 18478–18483 (2007).

    Article  CAS  Google Scholar 

  27. Ono, S. et al. Origin of apparent negative cooperativity of F1-ATPase. Biochim. Biophys. Acta 1607, 35–44 (2003).

    Article  CAS  Google Scholar 

  28. Dong, K., Ren, H. & Allison, W.S. The fluorescence spectrum of the introduced tryptophans in the α3(βF155W)3γ subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 cannot be used to distinguish between the number of nucleoside di- and triphosphates bound to catalytic sites. J. Biol. Chem. 277, 9540–9547 (2002).

    Article  CAS  Google Scholar 

  29. Ueno, H. et al. Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution. Biophys. J. 98, 2014–2023 (2010).

    Article  CAS  Google Scholar 

  30. Iko, Y., Tabata, K.V., Sakakihara, S., Nakashima, T. & Noji, H. Acceleration of the ATP-binding rate of F1-ATPase by forcible forward rotation. 583, 3187–3191. FEBS Lett. (2009).

  31. Kinosita, K. Jr., Adachi, K. & Itoh, H. Rotation of F1-ATPase: how an ATP-driven molecular machine may work. Annu. Rev. Biophys. Biomol. Struct. 33, 245–268 (2004).

    Article  CAS  Google Scholar 

  32. Masaike, T., Koyama-Horibe, F., Oiwa, K., Yoshida, M. & Nishizaka, T. Cooperative three-step motions in catalytic subunits of F1-ATPase correlate with 80 degrees and 40 degrees substep rotations. Nat. Struct. Mol. Biol. 15, 1326–1333 (2008).

    Article  CAS  Google Scholar 

  33. Masaike, T., Muneyuki, E., Noji, H., Kinosita, K. Jr. & Yoshida, M. F1-ATPase changes its conformations upon phosphate release. J. Biol. Chem. 277, 21643–21649 (2002).

    Article  CAS  Google Scholar 

  34. Yount, R.G., Lawson, D. & Rayment, I. Is myosin a “back door” enzyme? Biophys J. 68, 44S–47S (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nitta, R., Kikkawa, M., Okada, Y. & Hirokawa, N. KIF1A alternately uses two loops to bind microtubules. Science 305, 678–683 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Hayashi for critical discussion, H. Ueno for sample preparation and all members of Noji laboratory for technical support. This work was partially supported by the Grant-in-Aid for Scientific Research No. 18074005 to H.N. and by special education and research expenses (to H.N.) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

R.W. designed and performed experiments and analyzed data; R.I. gave technical support and conceptual advice; and H.N. designed experiments and wrote the paper.

Corresponding author

Correspondence to Hiroyuki Noji.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–5 (PDF 727 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, R., Iino, R. & Noji, H. Phosphate release in F1-ATPase catalytic cycle follows ADP release. Nat Chem Biol 6, 814–820 (2010). https://doi.org/10.1038/nchembio.443

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.443

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing