Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A systematic approach to protein glycosylation analysis: a path through the maze

Abstract

Protein glycosylation is an important post-translational modification. It is a feature that enhances the functional diversity of proteins and influences their biological activity. A wide range of functions for glycans have been described, from structural roles to participation in molecular trafficking, self-recognition and clearance. Understanding the basis of these functions is challenging because the biosynthetic machinery that constructs glycans executes sequential and competitive steps that result in a mixture of glycosylated variants (glycoforms) for each glycoprotein. Additionally, naturally occurring glycoproteins are often present at low levels, putting pressure on the sensitivity of the analytical technologies. No universal method for the rapid and reliable identification of glycan structure is currently available; hence, research goals must dictate the best method or combination of methods. To this end, we introduce some of the major technologies routinely used for structural N- and O-glycan analysis, describing the complementary information that each provides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural diversity at the monosaccharide level.
Figure 2: Structural diversity in N- and O-glycans.
Figure 3: HPLC-HILIC profile of N-glycans released from heavy chain human serum IgG.
Figure 4: Detailed structural analysis of human serum IgG using exoglycosidase sequencing.

Similar content being viewed by others

References

  1. Dwek, R.A. Glycobiology: Toward understanding the function of sugars. Chem. Rev. 96, 683–720 (1996).

    CAS  PubMed  Google Scholar 

  2. Dennis, J.W., Nabi, I.R. & Demetriou, M. Metabolism, cell surface organization, and disease. Cell 139, 1229–1241 (2009).

    PubMed  PubMed Central  Google Scholar 

  3. Freeze, H.H. & Aebi, M. Altered glycan structures: the molecular basis of congenital disorders of glycosylation. Curr. Opin. Struct. Biol. 15, 490–498 (2005).

    CAS  PubMed  Google Scholar 

  4. Peracaula, R., Barrabés, S., Sarrats, A., Rudd, P.M. & de Llorens, R. Altered glycosylation in tumours focused to cancer diagnosis. Dis. Markers 25, 207–218 (2008).

    CAS  PubMed  Google Scholar 

  5. Richards, M.R. & Lowary, T.L. Chemistry and biology of galactofuranose-containing polysaccharides. ChemBioChem 10, 1920–1938 (2009).

    CAS  PubMed  Google Scholar 

  6. Herget, S. et al. Statistical analysis of the bacterial carbohydrate structure data base (BCSDB): Characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans. BMC Struct. Biol. 8, 35 (2008).

    PubMed  PubMed Central  Google Scholar 

  7. Stimson, E. et al. Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol. Microbiol. 17, 1201–1214 (1995).

    CAS  PubMed  Google Scholar 

  8. Schoenhofen, I.C. et al. Functional characterization of dehydratase/aminotransferase pairs from Helicobacter and Campylobacter: enzymes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways. J. Biol. Chem. 281, 723–732 (2006).

    CAS  PubMed  Google Scholar 

  9. Varki, A. Multiple changes in sialic acid biology during human evolution. Glycoconj. J. 26, 231–245 (2009).

    CAS  PubMed  Google Scholar 

  10. Varki, A. & Marth, J.D. Oligosaccharides in vertebrate development. Semin. Dev. Biol. 6, 127–138 (1995).

    CAS  Google Scholar 

  11. Parodi, A.J. Reglucosylation of glycoproteins and quality control of glycoprotein folding in the endoplasmic reticulum of yeast cells. Biochimica et Biophysica Acta (BBA)-General Subjects 1426, 287–295 (1999).

    CAS  Google Scholar 

  12. Fukuda, M., Sasaki, H. & Fukuda, M.N. Structure and role of carbohydrate in human erythropoietin. Adv. Exp. Med. Biol. 271, 53–67 (1989).

    CAS  PubMed  Google Scholar 

  13. Arnold, J.N., Wormald, M.R., Sim, R.B., Rudd, P.M. & Dwek, R.A. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007).

    CAS  PubMed  Google Scholar 

  14. Cabib, E. & Leloir, L.F. Guanosine diphosphate mannose. J. Biol. Chem. 206, 779–790 (1954).

    CAS  PubMed  Google Scholar 

  15. Ohtsubo, K. & Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006).

    CAS  PubMed  Google Scholar 

  16. Shakin-Eshleman, S.H., Remaley, A.T., Eshleman, J.R., Wunner, W.H. & Spitalnik, S.L. N-linked glycosylation of rabies virus glycoprotein. Individual sequons differ in their glycosylation efficiencies and influence on cell surface expression. J. Biol. Chem. 267, 10690–10698 (1992).

    CAS  PubMed  Google Scholar 

  17. Kornfeld, R. & Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985).

    CAS  PubMed  Google Scholar 

  18. Nilsson, I.M. & von Heijne, G. Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J. Biol. Chem. 268, 5798–5801 (1993).

    CAS  PubMed  Google Scholar 

  19. Spiro, R.G. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12, 43R–56R (2002).

    CAS  PubMed  Google Scholar 

  20. White, T. et al. Purification and cDNA cloning of a human UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. J. Biol. Chem. 270, 24156–24165 (1995).

    CAS  PubMed  Google Scholar 

  21. Ten Hagen, K.G., Fritz, T.A. & Tabak, L.A. All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology 13, 1R–16R (2003).

    CAS  PubMed  Google Scholar 

  22. Hansen, J.E. et al. NetOglyc: Prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj. J. 15, 115–130 (1998).

    CAS  PubMed  Google Scholar 

  23. Wandall, H.H. et al. The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Glycobiology 17, 374–387 (2007).

    CAS  PubMed  Google Scholar 

  24. Wittwer, A.J. et al. Effects of N-glycosylation on in vitro activity of Bowes melanoma and human colon fibroblast derived tissue plasminogen activator. Biochemistry 28, 7662–7669 (1989).

    CAS  PubMed  Google Scholar 

  25. Kapitany, R.A. & Zebrowski, E.J. A high resolution PAS stain for polyacrylamide gel electrophoresis. Anal. Biochem. 56, 361–369 (1973).

    CAS  PubMed  Google Scholar 

  26. Hirabayashi, J. Concept, strategy and realization of lectin-based glycan profiling. J. Biochem. 144, 139–147 (2008).

    CAS  PubMed  Google Scholar 

  27. Tretter, V., Altmann, F. & Marz, L. Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha (1–3) to the asparagine-linked N-acetylglucosamine residue. Eur. J. Biochem. 199, 647–652 (1991).

    CAS  PubMed  Google Scholar 

  28. Royle, L., Radcliffe, C.M., Dwek, R.A. & Rudd, P.M. (eds.) Detailed structural analysis of N-glycans released from glycoproteins in SDS-PAGE gel bands using HPLC combined with exoglycosidase array digestions. in Glycobiology Protocols 125–143 (Humana Press Inc., Totowa, NJ, 2006).

  29. Küster, B., Wheeler, S.F., Hunter, A.P., Dwek, R.A. & Harvey, D.J. Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal. Biochem. 250, 82–101 (1997).

    PubMed  Google Scholar 

  30. Bhavanandan, V.P., Umemoto, J. & Davidson, E.A. Characterization of an endo-α-N-acetyl galactosaminidase from Diplococcus pneumoniae. Biochem. Biophys. Res. Commun. 70, 738–745 (1976).

    CAS  PubMed  Google Scholar 

  31. Merry, A.H. et al. Recovery of intact 2-aminobenzamide-labeled O-glycans released from glycoproteins by hydrazinolysis. Anal. Biochem. 304, 91–99 (2002).

    CAS  PubMed  Google Scholar 

  32. Carlson, D.M. Oligosaccharides isolated from pig submaxillary mucin. J. Biol. Chem. 241, 2984–2986 (1966).

    CAS  PubMed  Google Scholar 

  33. Huang, Y.M.Y. & Novotny, M.V. Microscale nonreductive release of O-linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Anal. Chem. 73, 6063–6069 (2001).

    CAS  PubMed  Google Scholar 

  34. Royle, L. et al. An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal. Biochem. 304, 70–90 (2002).

    CAS  PubMed  Google Scholar 

  35. Manzi, A. Acid hydrolysis for release of monosaccharides. in Current Protocols in Molecular Biology (eds. Ausubel, F.A., et al.) 17.16.1–17.16.11 (John Wiley and Sons, Inc., 2001).

  36. Townsend, R.R. & Hardy, M.R. Analysis of glycoprotein oligosaccharides using high-pH anion exchange chromatography. Glycobiology 1, 139–147 (1991).

    CAS  PubMed  Google Scholar 

  37. Merkle, R.K. & Popper, I. Carbohydrate composition analysis of glycoconjugates by gas-liquid chromatography/mass spectrometry. Methods Enzymol. 230, 1–15 (1994).

    CAS  PubMed  Google Scholar 

  38. Schauer, R. Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol. 19, 507–514 (2009).

    CAS  PubMed  Google Scholar 

  39. Hara, S., Takemori, Y., Yamaguchi, M., Nakamura, M. & Ohkura, Y. Fluorometric high-performance liquid chromatography of N-acetyl- and N-glycolylneuraminic acids and its application to their microdetermination in human and animal sera, glycoproteins, and glycolipids. Anal. Biochem. 164, 138–145 (1987).

    CAS  PubMed  Google Scholar 

  40. Raju, T.S. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr. Opin. Immunol. 20, 471–478 (2008).

    CAS  PubMed  Google Scholar 

  41. Hossler, P., Khattak, S.F. & Li, Z.J. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19, 936–949 (2009).

    CAS  PubMed  Google Scholar 

  42. Royle, L., Dwek, R.A. & Rudd, P.M. Determining the structure of oligosaccharides N- and O-linked to glycoproteins. in Current Protocols in Protein Science (eds. Coligan, J.E., et al.) 12.6.1–12.6.45 (John Wiley and Sons, Inc., 2006).

  43. Kotani, N. & Takasaki, S. Analysis of 2-aminobenzamide-labeled oligosaccharides by high-pH anion-exchange chromatography with fluorometric detection. Anal. Biochem. 264, 66–73 (1998).

    CAS  PubMed  Google Scholar 

  44. Domann, P.J. et al. Separation-based glycoprofiling approaches using fluorescent labels. Proteomics 7, 70–76 (2007).

    PubMed  Google Scholar 

  45. Lamari, F.N., Kuhn, R. & Karamanos, N.K. Derivatization of carbohydrates for chromatographic, electrophoretic and mass spectrometric structure analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 793, 15–36 (2003).

    CAS  PubMed  Google Scholar 

  46. Artemenko, N.V., Campbell, M.P. & Rudd, P.M. GlycoExtractor: A web-based interface for high throughput processing of HPLC-glycan data. J. Proteome Res. 9, 2037–2041 (2010).

    CAS  PubMed  Google Scholar 

  47. Campbell, M.P., Royle, L., Radcliffe, C.M., Dwek, R.A. & Rudd, P.M. GlycoBase and autoGU: tools for HPLC-based glycan analysis. Bioinformatics 24, 1214–1216 (2008).

    CAS  PubMed  Google Scholar 

  48. Royle, L. et al. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 376, 1–12 (2008).

    CAS  PubMed  Google Scholar 

  49. Knežević, A. et al. Variability, heritability and environmental determinants of human plasma N-glycome. J. Proteome Res. 8, 694–701 (2008).

    Google Scholar 

  50. Ahn, J., Bones, J., Yu, Y.-Q., Rudd, P.M. & Gilar, M. Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7 [mu]m sorbent. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878, 403–408 (2010).

    CAS  PubMed  Google Scholar 

  51. Klockow, A., Michael Widmer, H., Amado, R. & Paulus, A. Capillary electrophoresis of ANTS labelled oligosaccharide ladders and complex carbohydrates. Fresenius' J. Anal. Chem. 350, 415–425 (1994).

    CAS  Google Scholar 

  52. Guttman, A. Multistructure sequencing of N-linked fetuin glycans by capillary gel electrophoresis and enzyme matrix digestion. Electrophoresis 18, 1136–1141 (1997).

    CAS  PubMed  Google Scholar 

  53. Laroy, W., Contreras, R. & Callewaert, N. Glycome mapping on DNA sequencing equipment. Nat. Protoc. 1, 397–405 (2006).

    CAS  PubMed  Google Scholar 

  54. Mechref, Y. & Novotny, M.V. Glycomic analysis by capillary electrophoresis-mass spectrometry. Mass Spectrom. Rev. 28, 207–222 (2009).

    CAS  PubMed  Google Scholar 

  55. Kang, P., Mechref, Y. & Novotny, M.V. High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun. Mass Spectrom. 22, 721–734 (2008).

    CAS  PubMed  Google Scholar 

  56. Powell, A.K. & Harvey, D.J. Stabilization of sialic acids in N-linked oligosaccharides and gangliosides for analysis by positive ion matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 10, 1027–1032 (1996).

    CAS  PubMed  Google Scholar 

  57. Wada, Y. et al. Comparison of the methods for profiling glycoprotein glycans–HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology 17, 411–422 (2007).

    CAS  PubMed  Google Scholar 

  58. Cooper, H.J., Hakansson, K. & Marshall, A.G. The role of electron capture dissociation in biomolecular analysis. Mass Spectrom. Rev. 24, 201–222 (2005).

    CAS  PubMed  Google Scholar 

  59. Håkansson, K. et al. Combined electron capture and infrared multiphoton dissociation for multistage MS/MS in a Fourier transform ion cyclotron resonance mass spectrometer. Anal. Chem. 75, 3256–3262 (2003).

    PubMed  Google Scholar 

  60. Wu, S.-L., Huhmer, A.F.R., Hao, Z. & Karger, B.L. On-line LCMS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with post-translational modifications. J. Proteome Res. 6, 4230–4244 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Scott, N.E. et al. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, HCD and ETD-MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol. Cell. Proteomics published online, doi:10.1074/mcp.M000031-MCP201 (1 April 2010).

  62. Adamson, J.T. & Hakansson, K. Electron capture dissociation of oligosaccharides ionized with alkali, alkaline earth, and transition metals. Anal. Chem. 79, 2901–2910 (2007).

    CAS  PubMed  Google Scholar 

  63. Zhao, C., Xie, B., Chan, S.-Y., Costello, C.E. & O'Connor, P.B. Collisionally activated dissociation and electron capture dissociation provide complementary structural information for branched permethylated oligosaccharides. J. Am. Soc. Mass Spectrom. 19, 138–150 (2008).

    CAS  PubMed  Google Scholar 

  64. Wuhrer, M., Koeleman, C.A. & Deelder, A.M. Two-dimensional HPLC separation with reverse-phase-nano-LC-MS/MS for the characterization of glycan pools after labeling with 2-aminobenzamide. in Glycomics: Methods and Protocols 1–13 (Humana Press Inc., Totowa, NJ, 2009).

  65. Karlsson, N.G. et al. Negative ion graphitised carbon nano-liquid chromatography/mass spectrometry increases sensitivity for glycoprotein oligosaccharide analysis. Rapid Commun. Mass Spectrom. 18, 2282–2292 (2004).

    CAS  PubMed  Google Scholar 

  66. Wada, Y. et al. Comparison of methods for profiling O-glycosylation. Mol. Cell. Proteomics 9, 719–727 (2010).

    CAS  PubMed  Google Scholar 

  67. Larsson, J.M., Karlsson, H., Sjovall, H. & Hansson, G.C. A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology 19, 756–766 (2009).

    PubMed  Google Scholar 

  68. Agard, N.J. & Bertozzi, C.R. Chemical approaches to perturb, profile, and perceive glycans. Acc. Chem. Res. 42, 788–797 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Alley, W.R., Madera, M., Mechref, Y. & Novotny, M.V. Chip-based reversed-phase liquid chromatography mass spectrometry of permethylated N-linked glycans: A potential methodology for cancer-biomarker discovery. Anal. Chem. 82, 5095–5106 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chu, C.S. et al. Profile of native N-linked glycan structures from human serum using high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. Proteomics 9, 1939–1951 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wormald, M.R. et al. Conformational studies of oligosaccharides and glycopeptides: Complementarity of NMR, X-ray crystallography, and molecular modelling. Chem. Rev. 102, 371–386 (2002).

    CAS  PubMed  Google Scholar 

  72. Forsberg, L.S. & Carlson, R.W. Structural characterization of the primary O-antigenic polysaccharide of the Rhizobium leguminosarum 3841 lipopolysaccharide and identification of a new 3-acetimidoylamino-3-deoxyhexuronic acid glycosyl component: A unique O-methylated glycan of uniform size, containing 6-deoxy-3-O-methyl-D-talose, N-Acetylquinovosamine, and rhizoaminuronic acid (3-acetimidoylamino-3-deoxy-D-gluco-hexuronic acid). J. Biol. Chem. 283, 16037–16050 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Vliegenthart, J.F.G. Introduction to NMR spectroscopy of carbohydrates. in NMR Spectroscopy and Computer Modeling of Carbohydrates 1–19 (American Chemical Society, 2006).

  74. Bubb, W.A. NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity. Concepts in Magnetic Resonance Part A 19A, 1–19 (2003).

    CAS  Google Scholar 

  75. Maguire, Y.C., Chuang, I.L., Zhang, S. & Gershenfeld, S. Ultra-small-sample molecular structure detection using microslot waveguide nuclear spin resonance. Proc. Natl. Acad. Sci. USA 104, 9198–9203 (2007).

    CAS  PubMed  Google Scholar 

  76. Manzi, A.E. et al. Exploring the glycan repertoire of genetically modified mice by isolation and profiling of the major glycan classes and nano-NMR analysis of glycan mixtures. Glycobiology 10, 669–689 (2000).

    CAS  PubMed  Google Scholar 

  77. Lütteke, T. et al. GLYCOSCIENCES.de: an Internet portal to support glycomics and glycobiology research. Glycobiology 16, 71R–81R (2006).

    PubMed  Google Scholar 

  78. Jansson, P.-E., Stenutz, R. & Widmalm, G. Sequence determination of oligosaccharides and regular polysaccharides using NMR spectroscopy and a novel Web-based version of the computer program casper. Carbohydr. Res. 341, 1003–1010 (2006).

    CAS  PubMed  Google Scholar 

  79. Calvano, C.D., Zambonin, C.G. & Jensen, O.N. Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry. J. Proteomics 71, 304–317 (2008).

    CAS  PubMed  Google Scholar 

  80. Narimatsu, H. et al. A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. FEBS J. 277, 95–105 (2010).

    CAS  PubMed  Google Scholar 

  81. Wada, Y., Tajiri, M. & Yoshida, S. Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem. 76, 6560–6565 (2004).

    CAS  PubMed  Google Scholar 

  82. Wohlgemuth, J., Karas, M., Jiang, W., Hendriks, R. & Andrecht, S. Enhanced glyco-profiling by specific glycopeptide enrichment and complementary monolithic nano-LC (ZIC-HILIC/RP18e)/ESI-MS analysis. J. Sep. Sci. 33, 880–890 (2010).

    CAS  PubMed  Google Scholar 

  83. Alley, W.R. Jr., Mechref, Y. & Novotny, M.V. Use of activated graphitized carbon chips for liquid chromatography/mass spectrometric and tandem mass spectrometric analysis of tryptic glycopeptides. Rapid Commun. Mass Spectrom. 23, 495–505 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jiang, H., Wu, S.L., Karger, B.L. & Hancock, W.S. Characterization of the glycosylation occupancy and the active site in the follow-on protein therapeutic: TNK-tissue plasminogen activator. Anal. Chem. 82, 6154–6162 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wuhrer, M., Boer, A.R.d. & Deelder, A.M. Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom. Rev. 28, 192–206 (2009).

    CAS  PubMed  Google Scholar 

  86. Comelli, E.M. et al. A focused microarray approach to functional glycomics: transcriptional regulation of the glycome. Glycobiology 16, 117–131 (2006).

    CAS  PubMed  Google Scholar 

  87. Taylor, M.E. & Drickamer, K. Structural insights into what glycan arrays tell us about how glycan-binding proteins interact with their ligands. Glycobiology 19, 1155–1162 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Horlacher, T. et al. Determination of carbohydrate-binding preferences of human galectins with carbohydrate microarrays. ChemBioChem 11, 1563–1573 (2010).

    CAS  PubMed  Google Scholar 

  89. Kiessling, L.L. & Splain, R.A. Chemical approaches to glycobiology. Annu. Rev. Biochem. 79, 619–653 (2010).

    CAS  PubMed  Google Scholar 

  90. Laughlin, S.T. & Bertozzi, C.R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat. Protoc. 2, 2930–2944 (2007).

    CAS  PubMed  Google Scholar 

  91. Jervis, A.J. et al. Characterisation of N-linked protein glycosylation in Helicobacter pullorum. J. Bacteriol. published online, doi:10.1128/JB.00211–10 (25 June 2010).

  92. Svarovsky, S.A. & Joshi, L. Biocombinatorial selection of carbohydrate binding agents of therapeutic significance. Curr. Drug Discov. Technol. 5, 20–28 (2008).

    CAS  PubMed  Google Scholar 

  93. Harvey, D.J. et al. Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics 9, 3796–3801 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.M. is supported by Science Foundation Ireland, grant number 08/SRC/B1393. J.B. acknowledges the European Union FP6 GLYFDIS research program, grant reference 037661 for funding. J.J.K. acknowledges the Chief Scientist Office of the Scottish Government, the Royal Society and the European Union framework program 6 EUROSPAN project (contract number LSHG-CT-2006-018947) for funding. The authors are grateful to M. Campbell, W. Struwe, T. Tharmalingam and J. Abrahams for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline M Rudd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariño, K., Bones, J., Kattla, J. et al. A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol 6, 713–723 (2010). https://doi.org/10.1038/nchembio.437

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.437

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing