Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Methylation of FEN1 suppresses nearby phosphorylation and facilitates PCNA binding

Abstract

Flap endonuclease 1 (FEN1), a structure-specific endo- and exonuclease, has multiple functions that determine essential biological processes, such as cell proliferation and cell death. As such, the enzyme must be precisely regulated to execute each of its functions with the right timing and in a specific subcellular location. Here we report that FEN1 is methylated at arginine residues, primarily at Arg192. The methylation suppresses FEN1 phosphorylation at Ser187. The methylated form, but not the phosphorylated form, of FEN1 strongly interacts with proliferating cell nuclear antigen (PCNA), ensuring the 'on' and 'off' timing of its reaction. Mutations of FEN1 disrupting arginine methylation and PCNA interaction result in unscheduled phosphorylation and a failure to localize to DNA replication or repair foci. This consequently leads to a defect in Okazaki fragment maturation, a delay in cell cycle progression, impairment of DNA repair and a high frequency of genome-wide mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo and in vitro methylation of FEN1 by PRMT5.
Figure 2: Identification and validation of FEN1 methylation sites.
Figure 3: Methylation of FEN1 at Arg192 inhibits its phosphorylation at Ser187.
Figure 4: Methylation of FEN1 ensures its interaction with PCNA via suppression of its phosphorylation.
Figure 5: Methylation defect retards Okazaki fragment maturation and DNA replication and induces DNA damage.
Figure 6: Methylation of FEN1 is induced by H2O2 and is important for DNA repair.

Similar content being viewed by others

References

  1. Shen, B. et al. Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome stability and diseases. Bioessays 27, 717–729 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  2. Qiu, J., Li, X., Frank, G. & Shen, B. Cell cycle-dependent and DNA damage-inducible nuclear localization of FEN-1 nuclease is consistent with its dual functions in DNA replication and repair. J. Biol. Chem. 276, 4901–4908 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  3. Shibata, Y. & Nakamura, T. Defective flap endonuclease 1 activity in mammalian cells is associated with impaired DNA repair and prolonged S phase delay. J. Biol. Chem. 277, 746–754 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  4. Guo, Z. et al. Nucleolar localization and dynamic roles of flap endonuclease 1 in ribosomal DNA replication and damage repair. Mol. Cell. Biol. 28, 4310–4319 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  5. Liu, P. et al. Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria. Mol. Cell. Biol. 28, 4975–4987 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  6. Zheng, L. et al. Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates. Mol. Cell 32, 325–336 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  7. Kalifa, L., Beutner, G., Phadnis, N., Sheu, S.S. & Sia, E.A. Evidence for a role of FEN1 in maintaining mitochondrial DNA integrity. DNA Repair (Amst.) 8, 1242–1249 (2009).

    Article  CAS  Google Scholar 

  8. Wu, X. et al. Processing of branched DNA intermediates by a complex of human FEN-1 and PCNA. Nucleic Acids Res. 24, 2036–2043 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  9. Guo, Z. et al. Comprehensive mapping of the C-terminus of flap endonuclease-1 reveals distinct interaction sites for five proteins that represent different DNA replication and repair pathways. J. Mol. Biol. 377, 679–690 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  10. Chen, U., Chen, S., Saha, P. & Dutta, A. p21Cip1/Waf1 disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex. Proc. Natl. Acad. Sci. USA 93, 11597–11602 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  11. Li, X., Li, J., Harrington, J., Lieber, M.R. & Burgers, P.M. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J. Biol. Chem. 270, 22109–22112 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  12. Zheng, L., Dai, H., Qiu, J., Huang, Q. & Shen, B. Disruption of the FEN-1/PCNA interaction results in DNA replication defects, pulmonary hypoplasia, pancytopenia, and newborn lethality in mice. Mol. Cell. Biol. 27, 3176–3186 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  13. Levin, D.S., McKenna, A.E., Motycka, T.A., Matsumoto, Y. & Tomkinson, A.E. Interaction between PCNA and DNA ligase I is critical for joining of Okazaki fragments and long-patch base-excision repair. Curr. Biol. 10, 919–922 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  14. Zheng, L. et al. Novel function of the flap endonuclease 1 complex in processing stalled DNA replication forks. EMBO Rep. 6, 83–89 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  15. Parrish, J.Z., Yang, C., Shen, B. & Xue, D. CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO J. 22, 3451–3460 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  16. Hasan, S. et al. Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol. Cell 7, 1221–1231 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  17. Henneke, G., Koundrioukoff, S. & Hubscher, U. Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation. Oncogene 22, 4301–4313 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  18. McBride, A.E. & Silver, P.A. State of the arg: protein methylation at arginine comes of age. Cell 106, 5–8 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  19. Bedford, M.T. & Richard, S. Arginine methylation an emerging regulator of protein function. Mol. Cell 18, 263–272 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  20. Bedford, M.T. & Clarke, S.G. Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33, 1–13 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  21. Weber, S. & Bauer, U.M. Arginine methylation in interferon signaling: new light on an old story. Cell Cycle 8, 1464–1465 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  22. Boisvert, F.M., Hendzel, M.J., Masson, J.Y. & Richard, S. Methylation of MRE11 regulates its nuclear compartmentalization. Cell Cycle 4, 981–989 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  23. Adams, M.M. et al. 53BP1 oligomerization is independent of its methylation by PRMT1. Cell Cycle 4, 1854–1861 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  24. Jansson, M. et al. Arginine methylation regulates the p53 response. Nat. Cell Biol. 10, 1431–1439 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  25. El-Andaloussi, N. et al. Arginine methylation regulates DNA polymerase beta. Mol. Cell 22, 51–62 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  26. El-Andaloussi, N. et al. Methylation of DNA polymerase beta by protein arginine methyltransferase 1 regulates its binding to proliferating cell nuclear antigen. FASEB J. 21, 26–34 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  27. Boisvert, F.M., Dery, U., Masson, J.Y. & Richard, S. Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control. Genes Dev. 19, 671–676 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  28. Boisvert, F.M., Rhie, A., Richard, S. & Doherty, A.J. The GAR motif of 53BP1 is arginine methylated by PRMT1 and is necessary for 53BP1 DNA binding activity. Cell Cycle 4, 1834–1841 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  29. Liu, Q. & Dreyfuss, G. In vivo and in vitro arginine methylation of RNA-binding proteins. Mol. Cell. Biol. 15, 2800–2808 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  30. Chen, D.H., Wu, K.T., Hung, C.J., Hsieh, M. & Li, C. Effects of adenosine dialdehyde treatment on in vitro and in vivo stable protein methylation in HeLa cells. J. Biochem. 136, 371–376 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  31. Mostaqul Huq, M.D. et al. Suppression of receptor interacting protein 140 repressive activity by protein arginine methylation. EMBO J. 25, 5094–5104 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  32. Weber, S. et al. PRMT1-mediated arginine methylation of PIAS1 regulates STAT1 signaling. Genes Dev. 23, 118–132 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  33. Tishkoff, D.X., Filosi, N., Gaida, G.M. & Kolodner, R.D. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88, 253–263 (1997).

    Article  CAS  Google Scholar 

  34. Soza, S. et al. DNA ligase I deficiency leads to replication-dependent DNA damage and impacts cell morphology without blocking cell cycle progression. Mol. Cell. Biol. 29, 2032–2041 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  35. Whitfield, M.L. et al. Stem-loop binding protein, the protein that binds the 3′ end of histone mRNA, is cell cycle regulated by both translational and post-translational mechanisms. Mol. Cell. Biol. 20, 4188–4198 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  36. Yamagata, K. et al. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol. Cell 32, 221–231 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  37. Almeida, K.H. & Sobol, R.W. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst.) 6, 695–711 (2007).

    Article  CAS  Google Scholar 

  38. Yang, X.J. Multisite protein modification and intramolecular signaling. Oncogene 24, 1653–1662 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  39. Déry, U. et al. A glycine-arginine domain in control of the human MRE11 DNA repair protein. Mol. Cell. Biol. 28, 3058–3069 (2008).

    Article  PubMed Central  Google Scholar 

  40. Tom, S., Henricksen, L.A. & Bambara, R.A. Mechanism whereby proliferating cell nuclear antigen stimulates flap endonuclease 1. J. Biol. Chem. 275, 10498–10505 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  41. Le Romancer, M. et al. Regulation of estrogen rapid signaling through arginine methylation by PRMT1. Mol. Cell 31, 212–221 (2008).

    Article  CAS  Google Scholar 

  42. Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306, 279–283 (2004).

    Article  CAS  Google Scholar 

  43. Cuthbert, G.L. et al. Histone deimination antagonizes arginine methylation. Cell 118, 545–553 (2004).

    Article  CAS  Google Scholar 

  44. Chang, B., Chen, Y., Zhao, Y. & Bruick, R.K. JMJD6 is a histone arginine demethylase. Science 318, 444–447 (2007).

    Article  CAS  Google Scholar 

  45. Frietze, S., Lupien, M., Silver, P.A. & Brown, M. CARM1 regulates estrogen-stimulated breast cancer growth through up-regulation of E2F1. Cancer Res. 68, 301–306 (2008).

    Article  CAS  Google Scholar 

  46. Cheung, N., Chan, L.C., Thompson, A., Cleary, M.L. & So, C.W. Protein arginine-methyltransferase-dependent oncogenesis. Nat. Cell Biol. 9, 1208–1215 (2007).

    Article  CAS  Google Scholar 

  47. Mitra, A.K. et al. Association of polymorphisms in base excision repair genes with the risk of breast cancer: a case-control study in North Indian women. Oncol. Res. 17, 127–135 (2008).

    Article  PubMed Central  Google Scholar 

  48. Lu, R. & Serrero, G. Inhibition of PC cell-derived growth factor (PCDGF, epithelin/granulin precursor) expression by antisense PCDGF cDNA transfection inhibits tumorigenicity of the human breast carcinoma cell line MDA-MB-468. Proc. Natl. Acad. Sci. USA 97, 3993–3998 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  49. Szczesny, B., Tann, A.W., Longley, M.J., Copeland, W.C. & Mitra, S. Long patch base excision repair in mammalian mitochondrial genomes. J. Biol. Chem. 283, 26349–26356 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  50. Qian, Y. et al. Molecular events after antisense inhibition of hMSH2 in a HeLa cell line. Mutat. Res. 418, 61–71 (1998).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Tsaprailis in the Proteomics Core facility of University of Arizona for technical assistance in determining the methylation sites on FEN1. We thank S.R. da Costa for editorial assistance. This work was supported by US National Institutes of Health grants RO1 CA073764 and R01CA085344 to B.S.

Author information

Authors and Affiliations

Authors

Contributions

Z.G., L.Z. and B.S. designed the experiments, analyzed the data and wrote the manuscript. H.X. purified recombinant proteins. H.D., M.Z. and M.R.P. performed cell biological experiments. Q.M.C. performed the experiments with mass spectrometry and analyzed the data.

Corresponding author

Correspondence to Binghui Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1 and 2, Supplementary Methods (PDF 1664 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Z., Zheng, L., Xu, H. et al. Methylation of FEN1 suppresses nearby phosphorylation and facilitates PCNA binding. Nat Chem Biol 6, 766–773 (2010). https://doi.org/10.1038/nchembio.422

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.422

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing