Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biotin synthesis begins by hijacking the fatty acid synthetic pathway

Abstract

Although biotin is an essential enzyme cofactor found in all three domains of life, our knowledge of its biosynthesis remains fragmentary. Most of the carbon atoms of biotin are derived from pimelic acid, a seven-carbon dicarboxylic acid, but the mechanism whereby this intermediate is assembled remains unknown. Genetic analysis in Escherichia coli identified only two genes of unknown function required for pimelate synthesis, bioC and bioH. We report in vivo and in vitro evidence that the pimeloyl moiety is synthesized by a modified fatty acid synthetic pathway in which the ω-carboxyl group of a malonyl-thioester is methylated by BioC, which allows recognition of this atypical substrate by the fatty acid synthetic enzymes. The malonyl-thioester methyl ester enters fatty acid synthesis as the primer and undergoes two reiterations of the fatty acid elongation cycle to give pimeloyl-acyl carrier protein (ACP) methyl ester, which is hydrolyzed to pimeloyl-ACP and methanol by BioH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of the proposed biotin synthetic pathway.
Figure 2: Requirements for DTB synthesis from malonyl-CoA.
Figure 3: SAM and the methyl ester moiety are both required for synthesis of the pimeloyl moiety.
Figure 4: Inhibition of DTB synthesis by inhibitors of fatty acid synthesis and SAM-dependent methyltransferases.

Similar content being viewed by others

References

  1. Marquet, A., Bui, B.T.S. Florentin, D. Biosynthesis of biotin and lipoic acid, Vitamins & Hormones 61 51–101 (Academic Press, 2001).

    Article  CAS  Google Scholar 

  2. Webb, M.E., Marquet, A., Mendel, R.R., Rebeille, F. & Smith, A.G. Elucidating biosynthetic pathways for vitamins and cofactors. Nat. Prod. Rep. 24, 988–1008 (2007).

    Article  CAS  Google Scholar 

  3. Ifuku, O. et al. Origin of the carbon atoms of biotin. Eur. J. Biochem. 220, 585–591 (1994).

    Article  CAS  Google Scholar 

  4. Sanyal, I., Lee, S.-L. & Flint, D.H. Biosynthesis of pimeloyl-CoA, a biotin precursor in Escherichia coli, follows a modified fatty acid synthesis pathway: 13C-labeling studies. J. Am. Chem. Soc. 116, 2637–2638 (1994).

    Article  CAS  Google Scholar 

  5. Cleary, P.P. & Campbell, A. Deletion and complementation analysis of the biotin gene cluster of Escherichia coli. J. Bacteriol. 112, 830–839 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lemoine, Y., Wach, A. & Jeltsch, J.M. To be free or not: the fate of pimelate in Bacillus sphaericus and in Escherichia coli. Mol. Microbiol. 19, 645–647 (1996).

    Article  CAS  Google Scholar 

  7. Rolfe, B. & Eisenberg, M.A. Genetic and biochemical analysis of the biotin loci of Escherichia coli K-12. J. Bacteriol. 96, 515–524 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kwon, M.A., Kim, H.S., Oh, J.Y., Song, B.K. & Song, J.K. Gene cloning, expression, and characterization of a new carboxylesterase from I sp. SES-01: comparison with IBioHe enzyme. J. Microbiol. Biotechnol. 19, 147–154 (2009).

    Article  CAS  Google Scholar 

  9. Sanishvili, R. et al. Integrating structure, bioinformatics, and enzymology to discover function. J. Biol. Chem. 278, 26039–26045 (2003).

    Article  CAS  Google Scholar 

  10. Xie, X., Wong, W.W. & Tang, Y. Improving simvastatin bioconversion in Escherichia coli by deletion of bioH. Metab. Eng. 9, 379–386 (2007).

    Article  CAS  Google Scholar 

  11. Lezius, A., Ringelmann, E. & Lynen, F. Zur biochemischen Funktion des Biotins. IV. Die Biosynthese des Biotins. Biochem. Z. 336, 510–525 (1963).

    CAS  PubMed  Google Scholar 

  12. Austin, M.B. et al. Crystal structure of a bacterial type III polyketide synthase and enzymatic control of reactive polyketide intermediates. J. Biol. Chem. 279, 45162–45174 (2004).

    Article  CAS  Google Scholar 

  13. Tseng, C.C., McLoughlin, S.M., Kelleher, N.L. & Walsh, C.T. Role of the active site cysteine of DpgA, a bacterial type III polyketide synthase. Biochemistry 43, 970–980 (2004).

    Article  CAS  Google Scholar 

  14. White, S.W., Zheng, J., Zhang, Y.M. & Rock, C.O. The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 74, 791–831 (2005).

    Article  CAS  Google Scholar 

  15. Chapman-Smith, A. & Cronan, J.E. Jr. The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity. Trends Biochem. Sci. 24, 359–363 (1999).

    Article  CAS  Google Scholar 

  16. Jiang, Y., Chan, C. & Cronan, J.E. The soluble acyl-acyl carrier protein synthetase of Vibrio harveyi B392 is a member of the medium chain Acyl-CoA synthetase family. Biochemistry 45, 10008–10019 (2006).

    Article  CAS  Google Scholar 

  17. Jiang, Y., Morgan-Kiss, R.M., Campbell, J.W., Chan, C.H. & Cronan, J.E. Expression of Vibrio harveyi acyl-ACP synthetase allows efficient entry of exogenous fatty acids into the Escherichia coli fatty acid and lipid A synthetic pathways. Biochemistry 49, 718–726 (2010).

    Article  CAS  Google Scholar 

  18. Bower, S. et al. Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. J. Bacteriol. 178, 4122–4130 (1996).

    Article  CAS  Google Scholar 

  19. Choi-Rhee, E. & Cronan, J.E. Biotin synthase is catalytic in vivo, but catalysis engenders destruction of the protein. Chem. Biol. 12, 461–468 (2005).

    Article  CAS  Google Scholar 

  20. Choi-Rhee, E. & Cronan, J.E. A nucleosidase required for in vivo function of the S-adenosyl-L-methionine radical enzyme, biotin synthase. Chem. Biol. 12, 589–593 (2005).

    Article  CAS  Google Scholar 

  21. del Campillo-Campbell, A., Dykhuizen, D. & Cleary, P.P. Enzymic reduction of D-biotin D-sulfoxide to D-biotin. Methods Enzymol. 62, 379–385 (1979).

    Article  CAS  Google Scholar 

  22. Lennarz, W.J., Light, R.J. & Bloch, K. A fatty acid synthetase from E. coli. Proc. Natl. Acad. Sci. USA 48, 840–846 (1962).

    Article  CAS  Google Scholar 

  23. Campbell, J.W. & Cronan, J.E. Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu. Rev. Microbiol. 55, 305–332 (2001).

    Article  CAS  Google Scholar 

  24. Massengo-Tiassé, R.P. & Cronan, J.E. Vibrio cholerae FabV defines a new class of enoyl-acyl carrier protein reductase. J. Biol. Chem. 283, 1308–1316 (2008).

    Article  Google Scholar 

  25. Pugh, C.S., Borchardt, R.T. & Stone, H.O. Sinefungin, a potent inhibitor of virion mRNA(guanine-7-)-methyltransferase, mRNA(nucleoside-2′-)-methyltransferase, and viral multiplication. J. Biol. Chem. 253, 4075–4077 (1978).

    CAS  PubMed  Google Scholar 

  26. O'Regan, M. et al. Nucleotide sequence of the bioH gene of Escherichia coli. Nucleic Acids Res. 17, 8004 (1989).

    Article  CAS  Google Scholar 

  27. Choi, K.H., Heath, R.J. & Rock, C.O. β-Ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. J. Bacteriol. 182, 365–370 (2000).

    Article  CAS  Google Scholar 

  28. Tomczyk, N.H. et al. Purification and characterisation of the BIOH protein from the biotin biosynthetic pathway. FEBS Lett. 513, 299–304 (2002).

    Article  CAS  Google Scholar 

  29. Cai, H. & Clarke, S. A novel methyltransferase catalyzes the methyl esterification of trans-aconitate in Escherichia coli. J. Biol. Chem. 274, 13470–13479 (1999).

    Article  CAS  Google Scholar 

  30. Cai, H., Strouse, J., Dumlao, D., Jung, M.E. & Clarke, S. Distinct reactions catalyzed by bacterial and yeast trans-aconitate methyltransferases. Biochemistry 40, 2210–2219 (2001).

    Article  CAS  Google Scholar 

  31. Cronan, J.E. Jr. Molecular properties of short chain acyl thioesters of acyl carrier protein. J. Biol. Chem. 257, 5013–5017 (1982).

    CAS  PubMed  Google Scholar 

  32. Roujeinikova, A. et al. Structural studies of fatty acyl-(acyl carrier protein) thioesters reveal a hydrophobic binding cavity that can expand to fit longer substrates. J. Mol. Biol. 365, 135–145 (2007).

    Article  CAS  Google Scholar 

  33. Chan, D.I., Stockner, T., Tieleman, D.P. & Vogel, H.J. Molecular dynamics simulations of the Apo-, Holo-, and acyl-forms of Escherichia coli acyl carrier protein. J. Biol. Chem. 283, 33620–33629 (2008).

    Article  CAS  Google Scholar 

  34. Eisenberg, M.A. & Star, C. Synthesis of 7-oxo-8-aminopelargonic acid, a biotin vitamer, in cell-free extracts of Escherichia coli biotin auxotrophs. J. Bacteriol. 96, 1291–1297 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cryle, M.J. & Schlichting, I. Structural insights from a P450 carrier protein complex reveal how specificity is achieved in the P450 BioI ACP complex. Proc. Natl. Acad. Sci. USA 105, 15696–15701 (2008).

    Article  CAS  Google Scholar 

  36. Stok, J.E. & De Voss, J. Expression, purification, and characterization of BioI: a carbon-carbon bond cleaving cytochrome P450 involved in biotin biosynthesis in Bacillus subtilis. Arch. Biochem. Biophys. 384, 351–360 (2000).

    Article  CAS  Google Scholar 

  37. Miller, J. A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria (Cold Spring Harbor Laboratory Press, 1992).

  38. Rock, C.O. & Cronan, J.E. Jr. Acyl carrier protein from Escherichia coli. Methods Enzymol. 71, 341–351 (1981).

    Article  CAS  Google Scholar 

  39. Cronan, J.E. & Thomas, J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol. 459, 395–433 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant AI15650 from the US National Institute of Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Contributions

S.L., R.E.H. and J.E.C. performed experiments, and S.L. and J.E.C. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to John E Cronan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 2309 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, S., Hanson, R. & Cronan, J. Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat Chem Biol 6, 682–688 (2010). https://doi.org/10.1038/nchembio.420

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.420

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing