Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

nπ* interactions in proteins


Hydrogen bonds between backbone amides are common in folded proteins. Here, we show that an intimate interaction between backbone amides also arises from the delocalization of a lone pair of electrons (n) from an oxygen atom to the antibonding orbital (π*) of the subsequent carbonyl group. Natural bond orbital analysis predicted significant nπ* interactions in certain regions of the Ramachandran plot. These predictions were validated by a statistical analysis of a large, non-redundant subset of protein structures determined to high resolution. The correlation between these two independent studies is striking. Moreover, the nπ* interactions are abundant and especially prevalent in common secondary structures such as α-, 310- and polyproline II helices and twisted β-sheets. In addition to their evident effects on protein structure and stability, nπ* interactions could have important roles in protein folding and function, and merit inclusion in computational force fields.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Kinship of hydrogen bonds and nπ* interactions in an α-helix.
Figure 2: Ramachandran plots of nπ* interactions.
Figure 3: Histograms of d and θ values for Xaa-Ala, Xaa-Gly and Xaa-Pro dipeptides in α-helices, β-sheets and PII helices.
Figure 4: Values of d and θ in nπ* interactions.
Figure 5: Potential nπ* interactions in the selectivity filter of the KcsA K+ channel.

Accession codes


Protein Data Bank


  1. 1

    Isaacs, E.D., Shukla, A., Platzman, P.M., Hamann, D.R., Barbiellini, B. & Tulk, C.A. Covalency of the hydrogen bond in ice: a direct x-ray measurement. Phys. Rev. Lett. 82, 600–603 (1999).

    CAS  Article  Google Scholar 

  2. 2

    Weinhold, F. & Landis, C.R. Valency and Bonding: A Natural Bond Orbital Donor–Acceptor Perspective (Cambridge University Press, Cambridge, UK, 2005).

  3. 3

    Weinhold, F. Resonance character of hydrogen-bonding interactions in water and other H-bonded species. Adv. Protein Chem. 72, 121–155 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Khaliullin, R.Z., Cobar, E.A., Lochan, R.C., Bell, A.T. & Head-Gordon, M. Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals. J. Phys. Chem. A 111, 8753–8765 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Mirsky, A.E. & Pauling, L. On the structure of native, denatured, and coagulated proteins. Proc. Natl. Acad. Sci. USA 22, 439–447 (1936).

    CAS  Article  Google Scholar 

  6. 6

    Gray, H.B. Electrons and Chemical Bonding (W.A. Benjamin, New York, 1965).

  7. 7

    Raber, D.J., Raber, N.K., Chandrasekhar, J. & Schleyer, P.v.R. Geometries and energies of complexes between formaldehyde and first- and second-row cations. A theoretical study. Inorg. Chem. 23, 4076–4080 (1984).

    CAS  Article  Google Scholar 

  8. 8

    Laing, M. No rabbit ears on water. J. Chem. Educ. 64, 124–128 (1987).

    CAS  Article  Google Scholar 

  9. 9

    Pauling, L., Corey, R.B. & Branson, H.R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. USA 37, 205–211 (1951).

    CAS  Article  Google Scholar 

  10. 10

    DeRider, M.L. et al. Collagen stability: insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations. J. Am. Chem. Soc. 124, 2497–2505 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Hinderaker, M.P. & Raines, R.T. An electronic effect on protein structure. Protein Sci. 12, 1188–1194 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Horng, J.-C. & Raines, R.T. Stereoelectronic effects on polyproline conformation. Protein Sci. 15, 74–83 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Hodges, J.A. & Raines, R.T. Energetics of an nπ* interaction that impacts protein structure. Org. Lett. 8, 4695–4697 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Gao, J. & Kelly, J.W. Toward quantification of protein backbone–backbone hydrogen bonding energies: an energetic analysis of an amide-to-ester mutation in an α-helix within a protein. Protein Sci. 17, 1096–1101 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Shoulders, M.D. & Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Choudhary, A., Gandla, D., Krow, G.R. & Raines, R.T. Nature of amide carbonyl–carbonyl interactions in proteins. J. Am. Chem. Soc. 131, 7244–7246 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Dai, N. & Etzkorn, F.A. Cistrans proline isomerization effects on collagen triple-helix stability are limited. J. Am. Chem. Soc. 131, 13728–13732 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Gorske, B.C., Stringer, J.R., Bastian, B.L., Fowler, S.A. & Blackwell, H.E. New strategies for the design of folded peptoids revealed by a survey of noncovalent interactions in model systems. J. Am. Chem. Soc. 131, 16555–16567 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Pal, T.K. & Sankararamakrishnan, R. Quantum chemical investigations on intraresidue carbonyl–carbonyl contacts in aspartates of high-resolution protein structures. J. Phys. Chem. B 114, 1038–1049 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Jakobsche, C.E., Choudhary, A., Raines, R.T. & Miller, S.J. nπ* interaction and n)(π Pauli repulsion are antagonistic for protein stability. J. Am. Chem. Soc. 132, 6651–6653 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Berman, H., Henrick, K., Nakamura, H. & Markley, J.L. The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res. 35, D301–D303 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Mahan, S.D., Ireton, G.C., Knoeber, C., Stoddard, B.L. & Black, M.E. Random mutagenesis and selection of Escherichia coli cytosine deaminase for cancer gene therapy. Protein Eng. Des. Sel. 17, 625–633 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Zhou, Y., Morais-Cabral, J.H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Esposito, L., Vitagliano, L., Zagari, A. & Mazzarella, L. Pyramidalization of backbone carbonyl carbon atoms in proteins. Protein Sci. 9, 2038–2042 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Lario, P.I. & Vrielink, A. Atomic resolution density maps reveal secondary structure dependent differences in electronic distribution. J. Am. Chem. Soc. 125, 12787–12794 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Makhatadze, G.I. Thermodynamics of α-helix formation. Adv. Protein Chem. 72, 199–226 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Yang, A.-S. & Honig, B. Free energy determinants of secondary structure formation: I. α-Helices. J. Mol. Biol. 252, 351–365 (1995).

    CAS  Article  Google Scholar 

  28. 28

    Tanaka, S. & Scheraga, H.A. Statistical mechanical treatment of protein conformation. I. Conformational properties of amino acids in proteins. Macromolecules 9, 142–159 (1976).

    CAS  Article  Google Scholar 

  29. 29

    Toniolo, C., Bonora, G.M., Mutter, M. & Pillai, V.N.R. Linear oligopeptides. 78. The effect of the insertion of a proline residue on the solution conformation of host peptides. Makromol. Chem. 182, 2007–2014 (1981).

    CAS  Article  Google Scholar 

  30. 30

    Altmann, K.-H., Wojcik, J., Vasquez, M. & Scheraga, H.A. Helix–coil stability constants for the naturally occurring amino acids in water. XXIII. Proline parameters from random poly(hydroxybutylglutamine–co–L-proline). Biopolymers 30, 107–120 (1990).

    CAS  Article  Google Scholar 

  31. 31

    Yun, R.H., Anderson, A. & Hermans, J. Proline in α-helix: stability and conformations studied by dynamics simulation. Proteins 10, 219–228 (1991).

    CAS  Article  Google Scholar 

  32. 32

    Venkatachalapathi, Y.V. & Balaram, P. An incipient 310 helix in Piv–Pro–Pro–Ala-NHMe as a model for peptide folding. Nature 281, 83–84 (1979).

    CAS  Article  Google Scholar 

  33. 33

    Tobias, D.J. & Brooks, C.L. III. Thermodynamics and mechanism of α-helix initiation in alanine and valine peptides. Biochemistry 30, 6059–6070 (1991).

    CAS  Article  Google Scholar 

  34. 34

    Sheinerman, F.B. & Brooks, C.L. III. 310 helices in peptides and proteins as studied by modified Zimm–Bragg Theory. J. Am. Chem. Soc. 117, 10098–10103 (1995).

    CAS  Article  Google Scholar 

  35. 35

    Monticelli, L.P., T.D. & Colombo, G. Mechanism of helix nucleation and propagation: Microscopic view from microsecond time scale MD simulation. J. Phys. Chem. B 109, 20064–20067 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Richardson, J.S., Getzoff, E.D. & Richardson, D.C. The β-bulge: a common small unit of nonrepetitive protein structure. Proc. Natl. Acad. Sci. USA 75, 2574–2578 (1978).

    CAS  Article  Google Scholar 

  37. 37

    Chothia, C., Novotny, J., Bruccoleri, R. & Karplus, M. Domain association on immunogloblin molecules. The packing of variable domains. J. Mol. Biol. 186, 651–663 (1985).

    CAS  Article  Google Scholar 

  38. 38

    Jones, E.Y., Davis, S.J., Williams, A.F., Harlos, K. & Stuart, D.I. Crystal structure at 2.8 Å resolution of a soluble form of the cell adhesion molecule CD2. Nature 360, 232–239 (1992).

    CAS  Article  Google Scholar 

  39. 39

    Chan, A.W.E., Hutchinson, E.G., Harris, D. & Thornton, J.M. Identification, classification, and analysis of β-bulges in proteins. Protein Sci. 2, 1574–1590 (1993).

    CAS  Article  Google Scholar 

  40. 40

    Hutchinson, E.G. & Thornton, J.M. PROMOTIF—a program to identify and analyze structural motifs in proteins. Protein Sci. 5, 212–220 (1996).

    CAS  Article  Google Scholar 

  41. 41

    Lewis, P.N., Momany, F.A. & Scheraga, H.A. Folding of polypeptide chains in proteins: a proposed mechanism for folding. Proc. Natl. Acad. Sci. USA 68, 2293–2297 (1971).

    CAS  Article  Google Scholar 

  42. 42

    Zimmerman, S.S. & Scheraga, H.A. Local interactions in bends of proteins. Proc. Natl. Acad. Sci. USA 74, 4126–4129 (1977).

    CAS  Article  Google Scholar 

  43. 43

    Novotny, M. & Kleywegt, G.J. A survey of left-handed helices in protein structures. J. Mol. Biol. 347, 231–241 (2005).

    CAS  Article  Google Scholar 

  44. 44

    Farooq, A. et al. Solution structure of ERK2 binding domain of MAPK phosphatase MKP-3: Structural insights into MKP-3 activation by ERK2. Mol. Cell 7, 387–399 (2001).

    CAS  Article  Google Scholar 

  45. 45

    Gray, H.B. & Winkler, J.R. Electron flow through proteins. Chem. Phys. Lett. 483, 1–9 (2009).

    CAS  Article  Google Scholar 

  46. 46

    Frisch, M.J. et al. Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford, Connecticut, USA, 2004).

  47. 47

    Weinhold, F. Natural bond orbital methods. in Encyclopedia of Computational Chemistry (eds. Schleyer, P.v.R. et al.) 3, 792–1811 (John Wiley & Sons, Chichester, UK, 1998).

  48. 48

    Wang, G. & Dunbrack, R.L. PISCES: A protein sequence culling server. Bioinformatics 19, 1589–1591 (2003).

    CAS  Article  Google Scholar 

  49. 49

    Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    CAS  Article  Google Scholar 

  50. 50

    Stapley, B.J. & Creamer, T.P. A survey of left-handed polyproline II helices. Protein Sci. 8, 587–595 (1999).

    CAS  Article  Google Scholar 

Download references


We thank J. Spencer, J. Harvey, A. Mulholland, B. Bromley, M.D. Shoulders, B.R. Caes, C.N. Bradford, M.J. Palte and E. Moutevelis for helpful discussions. Financial support was provided by the University of Bristol and the Biotechnology and Biological Sciences Research Council of the United Kingdom (grant D003016) to D.N.W. and the US National Institutes of Health grant R01 AR044276 to R.T.R.

Author information




D.N.W. and R.T.R. conceived the project. G.J.B. and D.N.W. designed the PDB analyses; G.J.B. performed the PDB analyses. A.C. and R.T.R. designed the computational analyses; A.C. performed the computational analyses. All of the coauthors wrote and edited the manuscript.

Corresponding authors

Correspondence to Ronald T Raines or Derek N Woolfson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–5 (PDF 482 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bartlett, G., Choudhary, A., Raines, R. et al. nπ* interactions in proteins. Nat Chem Biol 6, 615–620 (2010).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing