Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Time-resolved FRET between GPCR ligands reveals oligomers in native tissues

Abstract

G protein–coupled receptor (GPCR) oligomers have been proposed to play critical roles in cell signaling, but confirmation of their existence in a native context remains elusive, as no direct interactions between receptors have been reported. To demonstrate their presence in native tissues, we developed a time-resolved FRET strategy that is based on receptor labeling with selective fluorescent ligands. Specific FRET signals were observed with four different receptors expressed in cell lines, consistent with their dimeric or oligomeric nature in these transfected cells. More notably, the comparison between FRET signals measured with sets of fluorescent agonists and antagonists was consistent with an asymmetric relationship of the two protomers in an activated GPCR dimer. Finally, we applied the strategy to native tissues and succeeded in demonstrating the presence of oxytocin receptor dimers and/or oligomers in mammary gland.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FRET signal between antagonists bound to V1a or oxytocin receptors expressed in heterologous expression systems.
Figure 2: FRET signal between antagonists bound to dopamine D2 receptors expressed in heterologous expression systems.
Figure 3: Binding experiments on the oxytocin receptor expressed in membrane preparations from native tissue.
Figure 4: FRET signals between fluorescent antagonists or agonists bound to native oxytocin receptors expressed in rat mammary glands.
Figure 5: FRET experiments performed on patches of native tissues.

Similar content being viewed by others

References

  1. Terrillon, S. & Bouvier, M. Roles of G-protein-coupled receptor dimerization. EMBO Rep. 5, 30–34 (2004).

    Article  CAS  Google Scholar 

  2. Ferré, S. et al. Building a new conceptual framework for receptor heteromers. Nat. Chem. Biol. 5, 131–134 (2009).

    Article  Google Scholar 

  3. Fotiadis, D. et al. Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. Curr. Opin. Struct. Biol. 16, 252–259 (2006).

    Article  CAS  Google Scholar 

  4. Gomes, I. et al. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc. Natl. Acad. Sci. USA 101, 5135–5139 (2004).

    Article  CAS  Google Scholar 

  5. Wreggett, K.A. & Wells, J.W. Cooperativity manifest in the binding properties of purified cardiac muscarinic receptors. J. Biol. Chem. 270, 22488–22499 (1995).

    Article  CAS  Google Scholar 

  6. Chidiac, P., Green, M.A., Pawagi, A.B. & Wells, J.W. Cardiac muscarinic receptors. Cooperativity as the basis for multiple states of affinity. Biochemistry 36, 7361–7379 (1997).

    Article  CAS  Google Scholar 

  7. Urizar, E. et al. Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO J. 24, 1954–1964 (2005).

    Article  CAS  Google Scholar 

  8. Waldhoer, M. et al. A heterodimer-selective agonist shows in vivo relevance of G protein–coupled receptor dimers. Proc. Natl. Acad. Sci. USA 102, 9050–9055 (2005).

    Article  CAS  Google Scholar 

  9. Roess, D.A., Horvat, R.D., Munnelly, H. & Barisas, B.G. Luteinizing hormone receptors are self-associated in the plasma membrane. Endocrinology 141, 4518–4523 (2000).

    Article  CAS  Google Scholar 

  10. Patel, R.C. et al. Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells. Proc. Natl. Acad. Sci. USA 99, 3294–3299 (2002).

    Article  CAS  Google Scholar 

  11. Bazin, H., Trinquet, E. & Mathis, G. Time resolved amplification of cryptate emission: a versatile technology to trace biomolecular interactions. J. Biotechnol. 82, 233–250 (2002).

    CAS  PubMed  Google Scholar 

  12. Terrillon, S. et al. Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol. Endocrinol. 17, 677–691 (2003).

    Article  CAS  Google Scholar 

  13. Devost, D. & Zingg, H.H. Identification of dimeric and oligomeric complexes of the human oxytocin receptor by co-immunoprecipitation and bioluminescence resonance energy transfer. J. Mol. Endocrinol. 31, 461–471 (2003).

    Article  CAS  Google Scholar 

  14. Cottet, M. et al. Past, present and future of vasopressin and oxytocin receptor oligomers, prototypical GPCR models to study dimerization processes. Curr. Opin. Pharmacol. 1, 59–66 (2009).

    Google Scholar 

  15. Armstrong, D. & Strange, P.G. Dopamine D2 receptor dimer formation: evidence from ligand binding. J. Biol. Chem. 276, 22621–22629 (2001).

    Article  CAS  Google Scholar 

  16. Guo, W. et al. Dopamine D2 receptors form higher-order oligomers at physiological expression levels. EMBO J. 27, 2293–2304 (2008).

    Article  CAS  Google Scholar 

  17. Javitch, J.A. The ants go marching two by two: oligomeric structure of G-protein-coupled receptors. Mol. Pharmacol. 66, 1077–1082 (2004).

    Article  CAS  Google Scholar 

  18. Vivo, M., Lin, H. & Strange, P.G. Investigation of cooperativity in the binding of ligands to the D(2) dopamine receptor. Mol. Pharmacol. 69, 226–235 (2006).

    CAS  PubMed  Google Scholar 

  19. Albizu, L. et al. Probing the existence of G protein–coupled receptor dimers by positive and negative ligand-dependent cooperative binding. Mol. Pharmacol. 70, 1783–1791 (2006).

    Article  CAS  Google Scholar 

  20. Albizu, L. et al. Towards efficient drug screening by homogeneous assays based on the development of new fluorescent vasopressin and oxytocin receptor ligands. J. Med. Chem. 50, 4976–4985 (2007).

    Article  CAS  Google Scholar 

  21. Durroux, T. et al. Fluorescent pseudo-peptide linear vasopressin antagonists: design, synthesis, and applications. J. Med. Chem. 42, 1312–1319 (1999).

    Article  CAS  Google Scholar 

  22. Mathis, G. Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin. Chem. 41, 1391–1397 (1995).

    CAS  PubMed  Google Scholar 

  23. Selvin, P.R. & Hearst, J.E. Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. Proc. Natl. Acad. Sci. USA 91, 10024–10028 (1994).

    Article  CAS  Google Scholar 

  24. Mouillac, B., Manning, M. & Durroux, T. Fluorescent agonists and antagonists for vasopressin/oxytocin G protein–coupled receptors: usefulness in ligand screening assays and receptor studies. Mini Rev. Med. Chem. 8, 996–1005 (2008).

    Article  CAS  Google Scholar 

  25. Chini, B. et al. Two aromatic residues regulate the response of the human oxytocin receptor to the partial agonist arginine vasopressin. FEBS Lett. 397, 201–206 (1996).

    Article  CAS  Google Scholar 

  26. Serradeil-Le Gal, C. et al. Binding properties of a selective tritiated vasopressin V2 receptor antagonist, [H]-SR 121463. Kidney Int. 58, 1613–1622 (2000).

    Article  Google Scholar 

  27. Maurel, D. et al. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat. Methods 5, 561–567 (2008).

    Article  CAS  Google Scholar 

  28. Christopoulos, A. & Kenakin, T. G protein–coupled receptor allosterism and complexing. Pharmacol. Rev. 54, 323–374 (2002).

    Article  CAS  Google Scholar 

  29. Durroux, T. Principles: a model for the allosteric interactions between ligand binding sites within a dimeric GPCR. Trends Pharmacol. Sci. 26, 376–384 (2005).

    Article  CAS  Google Scholar 

  30. Christopoulos, A., Lanzafame, A., Ziegler, A. & Mitchelson, F. Kinetic studies of co-operativity at atrial muscarinic M2 receptors with an “infinite dilution” procedure. Biochem. Pharmacol. 53, 795–800 (1997).

    Article  CAS  Google Scholar 

  31. Breton, C. et al. Direct identification of human oxytocin receptor-binding domains using a photoactivatable cyclic peptide antagonist: comparison with the human V1a vasopressin receptor. J. Biol. Chem. 276, 26931–26941 (2001).

    Article  CAS  Google Scholar 

  32. Cotte, N. et al. Identification of residues responsible for the selective binding of peptide antagonists and agonists in the V2 vasopressin receptor. J. Biol. Chem. 273, 29462–29468 (1998).

    Article  CAS  Google Scholar 

  33. Mouillac, B. et al. Mapping peptide antagonist binding sites of the human V1a and V2 vasopressin receptors. Adv. Exp. Med. Biol. 449, 359–361 (1998).

    Article  CAS  Google Scholar 

  34. Phalipou, S. et al. Mapping peptide-binding domains of the human V1a vasopressin receptor with a photoactivatable linear peptide antagonist. J. Biol. Chem. 272, 26536–26544 (1997).

    Article  CAS  Google Scholar 

  35. Terrillon, S. et al. Synthesis and characterization of fluorescent antagonists and agonists for human oxytocin and vasopressin V(1)(a) receptors. J. Med. Chem. 45, 2579–2588 (2002).

    Article  CAS  Google Scholar 

  36. Han, Y., Moreira, I.S., Urizar, E., Weinstein, H. & Javitch, J.A. Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat. Chem. Biol. 5, 688–695 (2009).

    Article  CAS  Google Scholar 

  37. Barki-Harrington, L., Luttrell, L.M. & Rockman, H.A. Dual inhibition of beta-adrenergic and angiotensin II receptors by a single antagonist: a functional role for receptor-receptor interaction in vivo. Circulation 108, 1611–1618 (2003).

    Article  CAS  Google Scholar 

  38. Damian, M., Martin, A., Mesnier, D., Pin, J.P. & Baneres, J.L. Asymmetric conformational changes in a GPCR dimer controlled by G-proteins. EMBO J. 25, 5693–5702 (2006).

    Article  CAS  Google Scholar 

  39. Guo, W., Shi, L. & Javitch, J.A. The fourth transmembrane segment forms the interface of the dopamine D2 receptor homodimer. J. Biol. Chem. 278, 4385–4388 (2003).

    Article  CAS  Google Scholar 

  40. Vilardaga, J.P. et al. Conformational cross-talk between alpha2A-adrenergic and mu-opioid receptors controls cell signaling. Nat. Chem. Biol. 4, 126–131 (2008).

    Article  CAS  Google Scholar 

  41. Springael, J.Y. et al. Allosteric modulation of binding properties between units of chemokine receptor homo- and hetero-oligomers. Mol. Pharmacol. 69, 1652–1661 (2006).

    Article  CAS  Google Scholar 

  42. Goudet, C. et al. Asymmetric functioning of dimeric metabotropic glutamate receptors disclosed by positive allosteric modulators. J. Biol. Chem. 280, 24380–24385 (2005).

    Article  CAS  Google Scholar 

  43. Hlavackova, V. et al. Evidence for a single heptahelical domain being turned on upon activation of a dimeric GPCR. EMBO J. 24, 499–509 (2005).

    Article  CAS  Google Scholar 

  44. Springael, J.Y., Urizar, E. & Parmentier, M. Dimerization of chemokine receptors and its functional consequences. Cytokine Growth Factor Rev. 16, 611–623 (2005).

    Article  CAS  Google Scholar 

  45. Ciruela, F. et al. Metabotropic glutamate 1alpha and adenosine A1 receptors assemble into functionally interacting complexes. J. Biol. Chem. 276, 18345–18351 (2001).

    Article  CAS  Google Scholar 

  46. Sohy, D. et al. Hetero-oligomerization of CCR2, CCR5, and CXCR4 and the protean effects of “selective” antagonists. J. Biol. Chem. 284, 31270–31279 (2009).

    Article  CAS  Google Scholar 

  47. Daniels, D.J. et al. Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacophores in a bivalent ligand series. Proc. Natl. Acad. Sci. USA 102, 19208–19213 (2005).

    Article  CAS  Google Scholar 

  48. Hague, C., Uberti, M.A., Chen, Z., Hall, R.A. & Minneman, K.P. Cell surface expression of alpha1D-adrenergic receptors is controlled by heterodimerization with alpha1B-adrenergic receptors. J. Biol. Chem. 279, 15541–15549 (2004).

    Article  CAS  Google Scholar 

  49. Chabre, M., Deterre, P. & Antonny, B. The apparent cooperativity of some GPCRs does not necessarily imply dimerization. Trends Pharmacol. Sci. 30, 182–187 (2009).

    Article  CAS  Google Scholar 

  50. Rives, M.L. et al. Crosstalk between GABA(B) and mGlu1a receptors reveals new insight into GPCR signal integration. EMBO J. 28, 2195–2208 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to S. Granier, P. Rondard and L. Prezeau for their critical reading of the manuscript. This work was supported by research grants from the Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Actions Concertées Incitatives “Molécules Cibles et Thérapeutiques” (no. 240 and 355), ANR-06-BLAN-0087-03 and ANR-09-BLAN-0272) and the US National Institutes of Health (grants GM025280, DA022413, MH54137). This work was also made possible by the Plateforme de Pharmacologie-Criblage of Montpellier and the Region Languedoc-Roussillon. NAPS and PPHT amines were synthesized by the National Institute of Mental Health Chemical Synthesis and Drug Supply Program and provided by A.N. and J.J.

Author information

Authors and Affiliations

Authors

Contributions

L.A. and T.D. originated the project. L.A., M.C. and T.D. executed most of the experiments and wrote the manuscript; S.S. and M.M. performed the peptide agonist synthesis; R.S. synthesized the antagonist peptide; I.B. performed experiments with SNAP-tag receptors; M.-L.R., M.K., A.N. and J.J. contributed to the development of the fluorescent dopamine receptor ligands and assay system; T.R. characterized the dopamine ligands; H.B., E.B. and L.L. labeled the ligands with fluorophores; C.B. performed saturation experiments with [125I]OTA; E.T., B.M. and J.-P.P. supported the project and participated in the writing of the manuscript.

Corresponding authors

Correspondence to Jean-Philippe Pin, Bernard Mouillac or Thierry Durroux.

Ethics declarations

Competing interests

T.R., H.B., E.B., L.L.and E.T. are employees of Cisbio, which develops HTRF compatible fluorescent ligands and products combining its HTRF technology with Covalys SNAP-tag protein labeling system, and therefore may gain financially through publication of this paper. Part of the work of CNRS UMR 5203 has been financially supported by Cisbio and by an unrestricted grant from Senomyx.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3, Supplementary Figures 1–3 and Supplementary Methods (PDF 2170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albizu, L., Cottet, M., Kralikova, M. et al. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6, 587–594 (2010). https://doi.org/10.1038/nchembio.396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing