Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Marine antifungal theonellamides target 3β-hydroxysterol to activate Rho1 signaling

Abstract

Linking bioactive compounds to their cellular targets is a central challenge in chemical biology. Here we report the mode of action of theonellamides, bicyclic peptides derived from marine sponges. We generated a chemical-genomic profile of theonellamide F using a collection of fission yeast strains in which each open reading frame (ORF) is expressed under the control of an inducible promoter. Clustering analysis of the Gene Ontology (GO) terms associated with the genes that alter drug sensitivity suggested a mechanistic link between theonellamide and 1,3-β-D-glucan synthesis. Indeed, theonellamide F induced overproduction of 1,3-β-D-glucan in a Rho1-dependent manner. Subcellular localization and in vitro binding assays using a fluorescent theonellamide derivative revealed that theonellamides specifically bind to 3β-hydroxysterols, including ergosterol, and cause membrane damage. The biological activity of theonellamides was alleviated in mutants defective in ergosterol biosynthesis. Theonellamides thus represent a new class of sterol-binding molecules that induce membrane damage and activate Rho1-mediated 1,3-β-D-glucan synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of chemical-genomic profiles.
Figure 2: Cell wall abnormality predicted by GO term analysis.
Figure 3: Identification of 3β-hydroxysterols as the target of TNM-F.
Figure 4: Genetic interactions with ergosterol biosynthetic genes.
Figure 5: Disruption of plasma membrane integrity by TNM-F.

Similar content being viewed by others

References

  1. Baltz, R.H. Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. Curr. Opin. Chem. Biol. 13, 144–151 (2009).

    Article  CAS  Google Scholar 

  2. Denning, D.W. Echinocandin antifungal drugs. Lancet 362, 1142–1151 (2003).

    Article  CAS  Google Scholar 

  3. Rovira, P., Mascarell, L. & Truffa-Bachi, P. The impact of immunosuppressive drugs on the analysis of T-cell activation. Curr. Med. Chem. 7, 673–692 (2000).

    Article  CAS  Google Scholar 

  4. Dawson, S., Malkinson, J.P., Paumier, D. & Searcey, M. Bisintercalator natural products with potential therapeutic applications: isolation, structure determination, synthetic and biological studies. Nat. Prod. Rep. 24, 109–126 (2007).

    Article  CAS  Google Scholar 

  5. Kong, D. et al. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res. 65, 9047–9055 (2005).

    Article  CAS  Google Scholar 

  6. Vera, M.D. & Joullie, M.M. Natural products as probes of cell biology: 20 years of didemnin research. Med. Res. Rev. 22, 102–145 (2002).

    Article  CAS  Google Scholar 

  7. Matsunaga, S. & Fusetani, N. Nonribosomal peptides from marine sponges. Curr. Org. Chem. 7, 945–966 (2003).

    Article  CAS  Google Scholar 

  8. Matsunaga, S., Fusetani, N., Hashimoto, K. & Walchli, M. Theonellamide-F - a novel antifungal bicyclic peptide from a marine sponge Theonella sp. J. Am. Chem. Soc. 111, 2582–2588 (1989).

    Article  CAS  Google Scholar 

  9. Matsunaga, S. & Fusetani, N. Theonellamides A–E, cytotoxic bicyclic peptides, from a marine sponge Theonella sp. J. Org. Chem. 60, 1177–1181 (1995).

    Article  CAS  Google Scholar 

  10. Bewley, C.A. & Faulkner, D.J. Theonegramide, an antifungal glycopeptide from the Philippine lithistid sponge Theonella swinhoei. J. Org. Chem. 59, 4849–4852 (1994).

    Article  CAS  Google Scholar 

  11. Schmidt, E.W., Bewley, C.A. & Faulkner, D.J. Theopalauamide, a bicyclic glycopeptide from filamentous bacterial symbionts of the lithistid sponge Theonella swinhoei from Palau and Mozambique. J. Org. Chem. 63, 1254–1258 (1998).

    Article  CAS  Google Scholar 

  12. Wada, S., Matsunaga, S., Fusetani, N. & Watabe, S. Interaction of cytotoxic bicyclic peptides, theonellamides A and F, with glutamate dehydrogenase and 17beta-hydroxysteroid dehydrogenase IV. Mar. Biotechnol. (NY) 2, 285–292 (2000).

    Article  CAS  Google Scholar 

  13. Matsuyama, A. et al. ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 24, 841–847 (2006).

    Article  CAS  Google Scholar 

  14. Shirai, A. et al. Global analysis of gel mobility of proteins and its use in target identification. J. Biol. Chem. 283, 10745–10752 (2008).

    Article  CAS  Google Scholar 

  15. Kanoh, N., Honda, K., Simizu, S., Muroi, M. & Osada, H. Photo-cross-linked small-molecule affinity matrix for facilitating forward and reverse chemical genetics. Angew. Chem. Int. Edn Engl. 44, 3559–3562 (2005).

    Article  CAS  Google Scholar 

  16. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  17. Arellano, M. et al. Schizosaccharomyces pombe protein kinase C homologues, pck1p and pck2p, are targets of rho1p and rho2p and differentially regulate cell integrity. J. Cell Sci. 112, 3569–3578 (1999).

    CAS  PubMed  Google Scholar 

  18. Tomishima, M. et al. FK463, a novel water-soluble echinocandin lipopeptide: synthesis and antifungal activity. J. Antibiot. (Tokyo) 52, 674–676 (1999).

    Article  CAS  Google Scholar 

  19. Deng, L. et al. Phosphatidylinositol-4-phosphate 5-kinase regulates fission yeast cell integrity through a phospholipase C-mediated protein kinase C-independent pathway. J. Biol. Chem. 280, 27561–27568 (2005).

    Article  CAS  Google Scholar 

  20. Kippert, F. & Lloyd, D. The aniline blue fluorochrome specifically stains the septum of both live and fixed Schizosaccharomyces pombe cells. FEMS Microbiol. Lett. 132, 215–219 (1995).

    Article  CAS  Google Scholar 

  21. Arellano, M., Duran, A. & Perez, P. Rho 1 GTPase activates the (1–3)beta-D-glucan synthase and is involved in Schizosaccharomyces pombe morphogenesis. EMBO J. 15, 4584–4591 (1996).

    Article  CAS  Google Scholar 

  22. Arellano, M., Duran, A. & Perez, P. Localisation of the Schizosaccharomyces pombe rho1p GTPase and its involvement in the organisation of the actin cytoskeleton. J. Cell Sci. 110, 2547–2555 (1997).

    CAS  PubMed  Google Scholar 

  23. Nakano, K., Arai, R. & Mabuchi, I. The small GTP-binding protein Rho1 is a multifunctional protein that regulates actin localization, cell polarity, and septum formation in the fission yeast Schizosaccharomyces pombe. Genes Cells 2, 679–694 (1997).

    Article  CAS  Google Scholar 

  24. Sayers, L.G. et al. Rho-dependence of Schizosaccharomyces pombe Pck2. Genes Cells 5, 17–27 (2000).

    Article  CAS  Google Scholar 

  25. Takeda, T., Kawate, T. & Chang, F. Organization of a sterol-rich membrane domain by cdc15p during cytokinesis in fission yeast. Nat. Cell Biol. 6, 1142–1144 (2004).

    Article  CAS  Google Scholar 

  26. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  Google Scholar 

  27. Iwaki, T. et al. Multiple functions of ergosterol in the fission yeast Schizosaccharomyces pombe. Microbiology 154, 830–841 (2008).

    Article  CAS  Google Scholar 

  28. Drabikowski, W., Lagwińska, E. & Sarzala, M.G. Filipin as a fluorescent probe for location of cholesterol in membranes of fragmented sarcoplasmic reticulum. Biochim. Biophys. Acta 291, 61–70 (1973).

    Article  CAS  Google Scholar 

  29. Wachtler, V., Rajagopalan, S. & Balasubramanian, M.K. Sterol-rich plasma membrane domains in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 116, 867–874 (2003).

    Article  CAS  Google Scholar 

  30. Codlin, S., Haines, R.L. & Mole, S.E. btn1 affects endocytosis, polarization of sterol-rich membrane domains and polarized growth in Schizosaccharomyces pombe. Traffic 9, 936–950 (2008).

    Article  CAS  Google Scholar 

  31. Ishiguro, J. & Kobayashi, W. An actin point-mutation neighboring the 'hydrophobic plug' causes defects in the maintenance of cell polarity and septum organization in the fission yeast Schizosaccharomyces pombe. FEBS Lett. 392, 237–241 (1996).

    Article  CAS  Google Scholar 

  32. Villar-Tajadura, M.A. et al. Rga2 is a Rho2 GAP that regulates morphogenesis and cell integrity in S. pombe. Mol. Microbiol. 70, 867–881 (2008).

    CAS  PubMed  Google Scholar 

  33. Chang, E.C. et al. Cooperative interaction of S. pombe proteins required for mating and morphogenesis. Cell 79, 131–141 (1994).

    Article  CAS  Google Scholar 

  34. Iwaki, N., Karatsu, K. & Miyamoto, M. Role of guanine nucleotide exchange factors for Rho family GTPases in the regulation of cell morphology and actin cytoskeleton in fission yeast. Biochem. Biophys. Res. Commun. 312, 414–420 (2003).

    Article  CAS  Google Scholar 

  35. Hampsey, M. A review of phenotypes in Saccharomyces cerevisiae. Yeast 13, 1099–1133 (1997).

    Article  CAS  Google Scholar 

  36. Garton, S., Michaelson, L.V., Beaudoin, F., Beale, M.H. & Napier, J.A. The dihydroceramide desaturase is not essential for cell viability in Schizosaccharomyces pombe. FEBS Lett. 538, 192–196 (2003).

    Article  CAS  Google Scholar 

  37. Takeo, K. et al. Rapid, extensive and reversible vacuolation of Schizosaccharomyces pombe induced by amphotericin B. FEMS Microbiol. Lett. 108, 265–269 (1993).

    Article  CAS  Google Scholar 

  38. Piel, J. Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr. Med. Chem. 13, 39–50 (2006).

    Article  CAS  Google Scholar 

  39. Ho, C.H. et al. A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nat. Biotechnol. 27, 369–377 (2009).

    Article  CAS  Google Scholar 

  40. Bolard, J. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta 864, 257–304 (1986).

    Article  CAS  Google Scholar 

  41. Shogomori, H. & Kobayashi, T. Lysenin: a sphingomyelin specific pore-forming toxin. Biochim. Biophys. Acta 1780, 612–618 (2008).

    Article  CAS  Google Scholar 

  42. Matsuyama, A. et al. pDUAL, a multipurpose, multicopy vector capable of chromosomal integration in fission yeast. Yeast 21, 1289–1305 (2004).

    Article  CAS  Google Scholar 

  43. Gachet, Y. & Hyams, J.S. Endocytosis in fission yeast is spatially associated with the actin cytoskeleton during polarised cell growth and cytokinesis. J. Cell Sci. 118, 4231–4242 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Boone (Univ. Toronto) for sharing unpublished results and discussions, A. Fujie (Astellas Pharma) for kind gifts of FK463 and cispentacin, K. Takegawa (Kyushu Univ.) for erg deletion strains, T. Kuno (Kobe Univ.) for the bgs1 mutant and pck deletion strains and K. Nakano (University of Tsukuba) for rho1-expression plasmids. We also thank J. Ishiguro (Konan Univ.) for the act1/cps8 mutant strain, which was provided through the Yeast Genetic Resource Center (YGRC), N. Kanoh, S. Shimizu and H. Osada (RIKEN Advanced Science Institute) for helping in the preparation of TNM affinity beads, J. Ochi (Kyoto Univ.) for technical assistance and J. Piotrowski (RIKEN Advanced Science Institute) for critical reading of the manuscript. We are grateful to the RIKEN Brain Science Institute's Research Resource Center for mass spectrometry. This work was supported in part by the New Energy and Industrial Technology Development Organization Project on Development of Basic Technology to Control Biological Systems Using Chemical Compounds, a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Chemical Genomics Research Project, RIKEN Advanced Science Institute.

Author information

Authors and Affiliations

Authors

Contributions

M.Y. is responsible for project planning and experimental design, with support from K.I., H. Kawasaki, H. Kakeya and T.K.; S.N. performed most of the experiments; Y.A. assisted in vitro sterol binding experiments; M.H. assisted chemical-genomic screen; A.M. and A.S. prepared the yeast strain collection; S.M. prepared theonellamides.

Corresponding author

Correspondence to Minoru Yoshida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–20, Supplementary Tables 1–3 and Supplementary Datasets 1–8 (PDF 2119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimura, S., Arita, Y., Honda, M. et al. Marine antifungal theonellamides target 3β-hydroxysterol to activate Rho1 signaling. Nat Chem Biol 6, 519–526 (2010). https://doi.org/10.1038/nchembio.387

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing