Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids

Abstract

Electrophilic fatty acids are generated during inflammation by non-enzymatic reactions and can modulate inflammatory responses. We used a new mass spectrometry–based electrophile capture strategy to reveal the formation of electrophilic oxo-derivatives (EFOX) from the omega-3 fatty acids docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). These EFOX were generated by a cyclooxygenase-2 (COX-2)-catalyzed mechanism in activated macrophages. Modulation of COX-2 activity by aspirin increased the rate of EFOX production and their intracellular levels. Owing to their electrophilic nature, EFOX adducted to cysteine and histidine residues of proteins and activated Nrf2-dependent anti-oxidant gene expression. We confirmed the anti-inflammatory nature of DHA- and DPA-derived EFOX by showing that they can act as peroxisome proliferator-activated receptor-γ (PPARγ) agonists and inhibit pro-inflammatory cytokine and nitric oxide production, all within biological concentration ranges. These data support the idea that EFOX are signaling mediators that transduce the beneficial clinical effects of omega-3 fatty acids, COX-2 and aspirin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EFOX are produced during macrophage activation.
Figure 2: EFOX-D5 is an α,β-unsaturated oxo-derivative of DPA (2).
Figure 3: EFOX-D5 formation depends on COX-2 activity.
Figure 4: EFOX form adducts with proteins and GSH after activation of RAW264.7.
Figure 5: 17-EFOX-D6 (8) and 17-EFOX-D5 (7) modulate anti-oxidant and inflammatory responses.
Figure 6: EFOX are anti-inflammatory signaling mediators.

References

  1. Neuringer, M., Anderson, G.J. & Connor, W.E. The essentiality of n-3 fatty acids for the development and function of the retina and brain. Annu. Rev. Nutr. 8, 517–541 (1988).

    Article  CAS  Google Scholar 

  2. Morris, M.C., Evans, D.A., Tangney, C.C., Bienias, J.L. & Wilson, R.S. Fish consumption and cognitive decline with age in a large community study. Arch. Neurol. 62, 1849–1853 (2005).

    Article  Google Scholar 

  3. Fedor, D. & Kelley, D.S. Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr. Opin. Clin. Nutr. Metab. Care 12, 138–146 (2009).

    Article  CAS  Google Scholar 

  4. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico. Lancet 354, 447–455 (1999).

  5. Lavie, C.J., Milani, R.V., Mehra, M.R. & Ventura, H.O. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J. Am. Coll. Cardiol. 54, 585–594 (2009).

    Article  CAS  Google Scholar 

  6. Duda, M.K. et al. Fish oil, but not flaxseed oil, decreases inflammation and prevents pressure overload-induced cardiac dysfunction. Cardiovasc. Res. 81, 319–327 (2009).

    Article  CAS  Google Scholar 

  7. Musiek, E.S. et al. Electrophilic cyclopentenone neuroprostanes are anti-inflammatory mediators formed from the peroxidation of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. J. Biol. Chem. 283, 19927–19935 (2008).

    Article  CAS  Google Scholar 

  8. Serhan, C.N. et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196, 1025–1037 (2002).

    Article  CAS  Google Scholar 

  9. Arita, M. et al. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc. Natl. Acad. Sci. USA 102, 7671–7676 (2005).

    Article  CAS  Google Scholar 

  10. Hong, S. et al. Resolvin D1, protectin D1, and related docosahexaenoic acid-derived products: Analysis via electrospray/low energy tandem mass spectrometry based on spectra and fragmentation mechanisms. J. Am. Soc. Mass Spectrom. 18, 128–144 (2007).

    Article  CAS  Google Scholar 

  11. Serhan, C.N., Chiang, N. & Van Dyke, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8, 349–361 (2008).

    Article  CAS  Google Scholar 

  12. Arita, M. et al. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 178, 3912–3917 (2007).

    Article  CAS  Google Scholar 

  13. Rudolph, T.K. & Freeman, B.A. Transduction of redox signaling by electrophile-protein reactions. Sci. Signal. 2, 90 re7 (2009).

    Article  Google Scholar 

  14. Dinkova-Kostova, A.T., Holtzclaw, W.D. & Wakabayashi, N. Keap1, the sensor for electrophiles and oxidants that regulates the phase 2 response, is a zinc metalloprotein. Biochemistry 44, 6889–6899 (2005).

    Article  CAS  Google Scholar 

  15. Itoh, K., Tong, K.I. & Yamamoto, M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic. Biol. Med. 36, 1208–1213 (2004).

    Article  CAS  Google Scholar 

  16. Rossi, A. et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature 403, 103–108 (2000).

    Article  CAS  Google Scholar 

  17. Straus, D.S. et al. 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc. Natl. Acad. Sci. USA 97, 4844–4849 (2000).

    Article  CAS  Google Scholar 

  18. Cui, T. et al. Nitrated fatty acids: Endogenous anti-inflammatory signaling mediators. J. Biol. Chem. 281, 35686–35698 (2006).

    Article  CAS  Google Scholar 

  19. Schopfer, F.J. et al. Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand. Proc. Natl. Acad. Sci. USA 102, 2340–2345 (2005).

    Article  CAS  Google Scholar 

  20. Shiraki, T. et al. Alpha,beta-unsaturated ketone is a core moiety of natural ligands for covalent binding to peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 280, 14145–14153 (2005).

    Article  CAS  Google Scholar 

  21. Schopfer, F.J. et al. Covalent peroxisome proliferator-activated receptor{gamma} binding by nitro-fatty acids: Endogenous ligands act as selective modulators. J. Biol. Chem. (2010).

  22. Mochizuki, M. et al. Role of 15-deoxy delta(12,14) prostaglandin J2 and Nrf2 pathways in protection against acute lung injury. Am. J. Respir. Crit. Care Med. 171, 1260–1266 (2005).

    Article  Google Scholar 

  23. Rudolph, V. et al. Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion. Cardiovasc. Res. 85, 155–166 (2010).

    Article  CAS  Google Scholar 

  24. Nadtochiy, S.M., Baker, P.R., Freeman, B.A. & Brookes, P.S. Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection. Cardiovasc. Res. 82, 333–340 (2009).

    Article  CAS  Google Scholar 

  25. Dinkova-Kostova, A.T., Cory, A.H., Bozak, R.E., Hicks, R.J. & Cory, J.G. Bis(2-hydroxybenzylidene)acetone, a potent inducer of the phase 2 response, causes apoptosis in mouse leukemia cells through a p53-independent, caspase-mediated pathway. Cancer Lett. 245, 341–349 (2007).

    Article  CAS  Google Scholar 

  26. Satoh, T. et al. Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophillic phase II inducers. Proc. Natl. Acad. Sci. USA 103, 768–773 (2006).

    Article  CAS  Google Scholar 

  27. Thornalley, P.J. Isothiocyanates: mechanism of cancer chemopreventive action. Anticancer Drugs 13, 331–338 (2002).

    Article  CAS  Google Scholar 

  28. Schopfer, F.J. et al. Detection and quantification of protein adduction by electrophilic fatty acids: mitochondrial generation of fatty acid nitroalkene derivatives. Free Radic. Biol. Med. 46, 1250–1259 (2009).

    Article  CAS  Google Scholar 

  29. Luche, J.-L., Rodriguez-Hahn, L. & Crabbé, P. Reduction of natural enones in the presence of cerium trichloride. J. Chem. Soc. Chem. Commun. 14, 601–602 (1978).

    Article  Google Scholar 

  30. Gierse, J.K. & Koboldt, C.M. 'Cyclooxygenase Assays' in Current Protocols in Pharmacology, 3.1.1–3.1.16 (ed. Enna, S.J.) (Wiley, 1998).

  31. Ishikawa, T., Esterbauer, H. & Sies, H. Role of cardiac glutathione transferase and of the glutathione S-conjugate export system in biotransformation of 4-hydroxynonenal in the heart. J. Biol. Chem. 261, 1576–1581 (1986).

    CAS  PubMed  Google Scholar 

  32. Levonen, A.-L. et al. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J. 378, 373–382 (2004).

    Article  CAS  Google Scholar 

  33. Batthyany, C. et al. Reversible post-translational modification of proteins by nitrated fatty acids in vivo. J. Biol. Chem. 281, 20450–20463 (2006).

    Article  CAS  Google Scholar 

  34. Murphy, R.C. & Zarini, S. Glutathione adducts of oxyeicosanoids. Prostaglandins Other Lipid Mediat. 68–69, 471–482 (2002).

    Article  Google Scholar 

  35. Itoh, T. et al. Structural basis for the activation of PPARgamma by oxidized fatty acids. Nat. Struct. Mol. Biol. 15, 924–931 (2008).

    Article  CAS  Google Scholar 

  36. Waku, T., Shiraki, T., Oyama, T. & Morikawa, K. Atomic structure of mutant PPARgamma LBD complexed with 15d-PGJ2: novel modulation mechanism of PPARgamma/RXRalpha function by covalently bound ligands. FEBS Lett. 583, 320–324 (2009).

    Article  CAS  Google Scholar 

  37. Koch, T., Hoskovec, M. & Boland, W. Efficient syntheses of (10E,12Z,15Z)-9-oxo- and (9Z,11E,15E)-13-oxo-octadecatrienoic acids; two stress metabolites of wounded plants. Tetrahedron 58, 3271–3274 (2002).

    Article  CAS  Google Scholar 

  38. Stark, K., Wongsud, B., Burman, R. & Oliw, E.H. Oxygenation of polyunsaturated long chain fatty acids by recombinant CYP4F8 and CYP4F12 and catalytic importance of Tyr-125 and Gly-328 of CYP4F8. Arch. Biochem. Biophys. 441, 174–181 (2005).

    Article  CAS  Google Scholar 

  39. Schwartzman, M.L., Falck, J.R., Yadagiri, P. & Escalante, B. Metabolism of 20-hydroxyeicosatetraenoic acid by cyclooxygenase. Formation and identification of novel endothelium-dependent vasoconstrictor metabolites. J. Biol. Chem. 264, 11658–11662 (1989).

    CAS  PubMed  Google Scholar 

  40. Erlemann, K.R. et al. Regulation of 5-hydroxyeicosanoid dehydrogenase activity in monocytic cells. Biochem. J. 403, 157–165 (2007).

    Article  CAS  Google Scholar 

  41. Penning, T.M. et al. Mammalian 3 alpha-hydroxysteroid dehydrogenases. Steroids 62, 455–456 (1997).

    Article  CAS  Google Scholar 

  42. Wei, C., Zhu, P., Shah, S.J. & Blair, I.A. 15-Oxo-eicosatetraenoic acid, a metabolite of macrophage 15-hydroxyprostaglandin dehydrogenase that inhibits endothelial cell proliferation. Mol. Pharmacol. 76, 516–525 (2009).

    Article  CAS  Google Scholar 

  43. Arita, M. et al. Metabolic inactivation of resolvin E1 and stabilization of its anti-inflammatory actions. J. Biol. Chem. 281, 22847–22854 (2006).

    Article  CAS  Google Scholar 

  44. Sun, Y.P. et al. Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J. Biol. Chem. 282, 9323–9334 (2007).

    Article  CAS  Google Scholar 

  45. Bronstein, J.C. & Bull, A.W. Substrate specificity and characterization of partially purified rat liver 13-hydroxyoctadecadienoic acid (13-HODE) dehydrogenase. Arch. Biochem. Biophys. 348, 219–225 (1997).

    Article  CAS  Google Scholar 

  46. Malur, A. et al. Deletion of PPAR gamma in alveolar macrophages is associated with a Th-1 pulmonary inflammatory response. J. Immunol. 182, 5816–5822 (2009).

    Article  CAS  Google Scholar 

  47. Rudolph, T.K. et al. Nitro-fatty acids reduce atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. Published online, doi: 10.1161/ATVBAHA.109.201582 (18 February 2010).

  48. Altmann, R. et al. 13-Oxo-ODE is an endogenous ligand for PPARgamma in human colonic epithelial cells. Biochem. Pharmacol. 74, 612–622 (2007).

    Article  CAS  Google Scholar 

  49. Alvarez, M.N., Trujillo, M. & Radi, R. Peroxynitrite formation from biochemical and cellular fluxes of nitric oxide and superoxide. Methods Enzymol. 359, 353–366 (2002).

    Article  CAS  Google Scholar 

  50. Nibbering, P.H., Zomerdijk, T.P., Corsel-Van Tilburg, A.J. & Van Furth, R. Mean cell volume of human blood leucocytes and resident and activated murine macrophages. J. Immunol. Methods 129, 143–145 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants HL58115 and HL64937, the American Diabetes Association (F.J.S.), and Fondazione Ri.MED, Italy (C.C.). We thank J. Ruzicka and A. Hilderbrand at Thermo Fisher Scientific for assistance with accurate mass measurements of EFOX using an LTQ OrbitrapVelos instrument.

Author information

Authors and Affiliations

Authors

Contributions

A.L.G., C.C., B.A.F. and F.J.S. designed experiments and prepared the manuscript. A.L.G. performed the search, discovery, and characterization of EFOX and PPARγ-reporter experiments. C.C. performed in vitro COX-2-based synthesis of EFOX, COX-2 siRNA and cell signaling experiments. G.B. performed proteomic analysis. M.P.C., T.K.R. and V.R. assisted with or performed animal-based studies. S.R.W. assisted with chemical derivatization reactions for EFOX characterization.

Corresponding authors

Correspondence to Bruce A Freeman or Francisco J Schopfer.

Ethics declarations

Competing interests

B.A.F. acknowledges financial interest in Complexa, Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–22 and Supplementary Table 1 (PDF 4255 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groeger, A., Cipollina, C., Cole, M. et al. Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat Chem Biol 6, 433–441 (2010). https://doi.org/10.1038/nchembio.367

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.367

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing