Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic mutagenesis reveals A2660 of 23S ribosomal RNA as key to EF-G GTPase activation

Abstract

Following ribosomal peptide bond formation, the reaction products, peptidyl-tRNA and deacylated tRNA, need to be translocated from the A- and P-sites to the P- and E-sites, respectively. This process is facilitated by the GTPase elongation factor G (EF-G). The mechanism describing how the ribosome activates GTP hydrolysis is poorly understood in molecular terms. By using an 'atomic mutagenesis' approach, which allows the manipulation of specific functional groups on 23S rRNA nucleotides in the context of the entire ribosome, we disclose the adenine exocyclic N6 amino group at A2660 of the sarcin-ricin loop as a key determinant for triggering GTP hydrolysis on EF-G. We show that the purine π system–expanding characteristics of the exocyclic functional group at the C6 position of A2660 are essential. We propose that stacking interactions of A2660 with EF-G may act as a molecular trigger to induce repositioning of suspected functional amino acids in EF-G that in turn promote GTP hydrolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 23S rRNA constructs and uncoupled EF-G GTPase activities of wild-type ribosomes.
Figure 2: EF-G GTPase activities using reconstituted ribosomes.
Figure 3: Atomic mutagenesis at A2660 of the SRL.
Figure 4: Binding activity of EF-G to reconstituted ribosomes.

Similar content being viewed by others

References

  1. Erlacher, M.D. & Polacek, N. Ribosomal catalysis: the evolution of mechanistic concepts for peptide bond formation and peptidyl-tRNA hydrolysis. RNA Biol. 5, 5–12 (2008).

    Article  CAS  Google Scholar 

  2. Chirkova, A., Erlacher, M., Micura, R. & Polacek, N. Chemically engineered ribosomes: a new frontier in synthetic biology. Curr. Org. Chem. 14, 148–161 (2010).

    Article  CAS  Google Scholar 

  3. Hauryliuk, V. et al. The pretranslocation ribosome is targeted by GTP-bound EF-G in partially activated form. Proc. Natl. Acad. Sci. USA 105, 15678–15683 (2008).

    Article  CAS  Google Scholar 

  4. Rodnina, M.V., Savelsbergh, A., Katunin, V.I. & Wintermeyer, W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 37–41 (1997).

    Article  CAS  Google Scholar 

  5. Zavialov, A.V., Hauryliuk, V.V. & Ehrenberg, M. Guanine-nucleotide exchange on ribosome-bound elongation factor G initiates the translocation of tRNAs. J. Biol. 4, 9 (2005).

    Article  Google Scholar 

  6. Blanchard, S.C., Gonzalez, R.L., Kim, H.D., Chu, S. & Puglisi, J.D. tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11, 1008–1014 (2004).

    Article  CAS  Google Scholar 

  7. Datta, P.P., Sharma, M.R., Qi, L., Frank, J. & Agrawal, R.K. Interaction of the G′ domain of elongation factor G and the C-terminal domain of ribosomal protein L7/L12 during translocation as revealed by cryo-EM. Mol. Cell 20, 723–731 (2005).

    Article  CAS  Google Scholar 

  8. Moazed, D., Robertson, J.M. & Noller, H.F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334, 362–364 (1988).

    Article  CAS  Google Scholar 

  9. Stark, H., Rodnina, M.V., Wieden, H.J., van Heel, M. & Wintermeyer, W. Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100, 301–309 (2000).

    Article  CAS  Google Scholar 

  10. Diaconu, M. et al. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121, 991–1004 (2005).

    Article  CAS  Google Scholar 

  11. Rodnina, M.V. et al. Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. Proc. Natl. Acad. Sci. USA 96, 9586–9590 (1999).

    Article  CAS  Google Scholar 

  12. Connell, S.R. et al. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol. Cell 25, 751–764 (2007).

    Article  CAS  Google Scholar 

  13. Valle, M. et al. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat. Struct. Biol. 10, 899–906 (2003).

    Article  CAS  Google Scholar 

  14. Villa, E. et al. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc. Natl. Acad. Sci. USA 106, 1063–1068 (2009).

    Article  CAS  Google Scholar 

  15. Gao, Y.G. et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699 (2009).

    Article  CAS  Google Scholar 

  16. Schmeing, T.M. et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688–694 (2009).

    Article  CAS  Google Scholar 

  17. Endo, Y., Mitsui, K., Motizuki, M. & Tsurugi, K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J. Biol. Chem. 262, 5908–5912 (1987).

    CAS  PubMed  Google Scholar 

  18. Endo, Y. & Wool, I.G. The site of action of alpha-sarcin on eukaryotic ribosomes. The sequence at the alpha-sarcin cleavage site in 28 S ribosomal ribonucleic acid. J. Biol. Chem. 257, 9054–9060 (1982).

    CAS  PubMed  Google Scholar 

  19. Hausner, T.P., Atmadja, J. & Nierhaus, K.H. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie 69, 911–923 (1987).

    Article  CAS  Google Scholar 

  20. Benson, S., Olsnes, S., Pihl, A., Skorve, J. & Abraham, A.K. On the mechanism of protein-synthesis inhibition by abrin and ricin. Inhibition of the GTP-hydrolysis site on the 60-S ribosomal subunit. Eur. J. Biochem. 59, 573–580 (1975).

    Article  CAS  Google Scholar 

  21. Sperti, S., Montanaro, L., Mattioli, A. & Testoni, G. Relationship between elongation factor I- and elongation factor II- dependent guanosine triphosphatase activities of ribosomes. Inhibition of both activities by ricin. Biochem. J. 148, 447–451 (1975).

    Article  CAS  Google Scholar 

  22. Obrig, T.G., Moran, T.P. & Brown, J.E. The mode of action of Shiga toxin on peptide elongation of eukaryotic protein synthesis. Biochem. J. 244, 287–294 (1987).

    Article  CAS  Google Scholar 

  23. Montanaro, L., Sperti, S. & Stirpe, F. Inhibition by ricin of protein synthesis in vitro. Ribosomes as the target of the toxin. Biochem. J. 136, 677–683 (1973).

    Article  CAS  Google Scholar 

  24. Nilsson, L. & Nygard, O. The mechanism of the protein-synthesis elongation cycle in eukaryotes. Effect of ricin on the ribosomal interaction with elongation factors. Eur. J. Biochem. 161, 111–117 (1986).

    Article  CAS  Google Scholar 

  25. Erlacher, M.D. et al. Chemical engineering of the peptidyl transferase center reveals an important role of the 2′-hydroxyl group of A2451. Nucleic Acids Res. 33, 1618–1627 (2005).

    Article  CAS  Google Scholar 

  26. Erlacher, M.D. et al. Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2′-OH at A2451 of 23S rRNA. J. Am. Chem. Soc. 128, 4453–4459 (2006).

    Article  CAS  Google Scholar 

  27. Lang, K., Erlacher, M., Wilson, D.N., Micura, R. & Polacek, N. The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis. Chem. Biol. 15, 485–492 (2008).

    Article  CAS  Google Scholar 

  28. Amort, M. et al. An intact ribose moiety at A2602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination. Nucleic Acids Res. 35, 5130–5140 (2007).

    Article  CAS  Google Scholar 

  29. Chan, Y.L., Dresios, J. & Wool, I.G. A pathway for the transmission of allosteric signals in the ribosome through a network of RNA tertiary interactions. J. Mol. Biol. 355, 1014–1025 (2006).

    Article  CAS  Google Scholar 

  30. Lancaster, L., Lambert, N.J., Maklan, E.J., Horan, L.H. & Noller, H.F. The sarcin-ricin loop of 23S rRNA is essential for assembly of the functional core of the 50S ribosomal subunit. RNA 14, 1999–2012 (2008).

    Article  CAS  Google Scholar 

  31. Mohr, D., Wintermeyer, W. & Rodnina, M.V. GTPase activation of elongation factors Tu and G on the ribosome. Biochemistry 41, 12520–12528 (2002).

    Article  CAS  Google Scholar 

  32. Savelsbergh, A., Mohr, D., Kothe, U., Wintermeyer, W. & Rodnina, M.V. Control of phosphate release from elongation factor G by ribosomal protein L7/12. EMBO J. 24, 4316–4323 (2005).

    Article  CAS  Google Scholar 

  33. Seo, H.S. et al. EF-G-dependent GTPase on the ribosome. conformational change and fusidic acid inhibition. Biochemistry 45, 2504–2514 (2006).

    Article  CAS  Google Scholar 

  34. Munishkin, A. & Wool, I.G. The ribosome-in-pieces: binding of elongation factor EF-G to oligoribonucleotides that mimic the sarcin/ricin and thiostrepton domains of 23S ribosomal RNA. Proc. Natl. Acad. Sci. USA 94, 12280–12284 (1997).

    Article  CAS  Google Scholar 

  35. Qin, Y. et al. The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Cell 127, 721–733 (2006).

    Article  CAS  Google Scholar 

  36. Schuette, J.C. et al. GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J. 28, 755–765 (2009).

    Article  CAS  Google Scholar 

  37. Macbeth, M.R. & Wool, I.G. The phenotype of mutations of G2655 in the sarcin/ricin domain of 23 S ribosomal RNA. J. Mol. Biol. 285, 965–975 (1999).

    Article  CAS  Google Scholar 

  38. Leonov, A.A., Sergiev, P.V., Bogdanov, A.A., Brimacombe, R. & Dontsova, O.A. Affinity purification of ribosomes with a lethal G2655C mutation in 23 S rRNA that affects the translocation. J. Biol. Chem. 278, 25664–25670 (2003).

    Article  CAS  Google Scholar 

  39. Chan, Y.L., Correll, C.C. & Wool, I.G. The location and the significance of a cross-link between the sarcin/ricin domain of ribosomal RNA and the elongation factor-G. J. Mol. Biol. 337, 263–272 (2004).

    Article  CAS  Google Scholar 

  40. Marchant, A. & Hartley, M.R. Mutational studies on the alpha-sarcin loop of Escherichia coli 23S ribosomal RNA. Eur. J. Biochem. 226, 141–147 (1994).

    Article  CAS  Google Scholar 

  41. Tapprich, W.E. & Dahlberg, A.E. A single base mutation at position 2661 in E. coli 23S ribosomal RNA affects the binding of ternary complex to the ribosome. EMBO J. 9, 2649–2655 (1990).

    Article  CAS  Google Scholar 

  42. Daviter, T., Wieden, H.J. & Rodnina, M.V. Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. J. Mol. Biol. 332, 689–699 (2003).

    Article  CAS  Google Scholar 

  43. Sprinzl, M. et al. Regulation of GTPases in the bacterial translation machinery. Biol. Chem. 381, 367–375 (2000).

    Article  CAS  Google Scholar 

  44. Long, S.B., Long, M.B., White, R.R. & Sullenger, B.A. Crystal structure of an RNA aptamer bound to thrombin. RNA 14, 2504–2512 (2008).

    Article  CAS  Google Scholar 

  45. Khaitovich, P., Tenson, T., Kloss, P. & Mankin, A.S. Reconstitution of functionally active Thermus aquaticus large ribosomal subunits with in vitro-transcribed rRNA. Biochemistry 38, 1780–1788 (1999).

    Article  CAS  Google Scholar 

  46. Wilson, K.S. & Nechifor, R. Interactions of translational factor EF-G with the bacterial ribosome before and after mRNA translocation. J. Mol. Biol. 337, 15–30 (2004).

    Article  CAS  Google Scholar 

  47. Yu, H., Chan, Y.L. & Wool, I.G. The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome. J. Mol. Biol. 386, 802–813 (2009).

    Article  CAS  Google Scholar 

  48. Szaflarski, W. et al. New features of the ribosome and ribosomal inhibitors: non-enzymatic recycling, misreading and back-translocation. J. Mol. Biol. 380, 193–205 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y.-L. Chan, S. Connell, M. Erlacher, M. Pech, P. Sergiev, T. Tenson, O. Vesper, D. Wilson and M. Zywicki for valuable comments and suggestions. A. Hüttenhofer is acknowledged for his support at the Division of Genomics and RNomics. We thank A. Mankin (University of Illinois at Chicago) and N. Shankaran (University of Illinois at Chicago) for the GAC deletion mutant, M. Sprinzl (University of Bayreuth) for the parental EF-G clone, T. Tenson (University of Tartu) for the LepA clone and W. Piendl and G. Brosch for help with the EF-G and LepA purifications, respectively. We acknowledge F. Handle for experimental help during a lab rotation. This work was funded by the Austrian Science Foundation (FWF) (I317 and P21641 to R.M. and Y315 to N.P.) and the Austrian Ministry of Science and Research (GenAU project consortium 'non-coding RNAs' P0726-012-012 to R.M. and D-110420-012-012 to N.P.).

Author information

Authors and Affiliations

Authors

Contributions

N.C. established the GTPase and EF-G binding assays with reconstituted ribosomes and contributed to all figures. A.C. optimized the in vitro translation assay and contributed to Figure 3 and Supplementary Figure 2. B.P. synthesized non-natural nucleoside analogs under the supervision of R.M. N.P., R.M. and N.C. analyzed the data. N.P. designed the study and wrote the paper (together with R.M. and N.C.).

Corresponding author

Correspondence to Norbert Polacek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–8 (PDF 4094 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clementi, N., Chirkova, A., Puffer, B. et al. Atomic mutagenesis reveals A2660 of 23S ribosomal RNA as key to EF-G GTPase activation. Nat Chem Biol 6, 344–351 (2010). https://doi.org/10.1038/nchembio.341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.341

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing