Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A chemical and phosphoproteomic characterization of dasatinib action in lung cancer

Abstract

We describe a strategy for comprehending signaling pathways that are active in lung cancer cells and that are targeted by dasatinib using chemical proteomics to identify direct interacting proteins combined with immunoaffinity purification of tyrosine-phosphorylated peptides corresponding to activated tyrosine kinases. We identified nearly 40 different kinase targets of dasatinib. These include SRC-family kinase (SFK) members (LYN, SRC, FYN, LCK and YES), nonreceptor tyrosine kinases (FRK, BRK and ACK) and receptor tyrosine kinases (Ephrin receptors, DDR1 and EGFR). Using quantitative phosphoproteomics, we identified peptides corresponding to autophosphorylation sites of these tyrosine kinases that are inhibited in a concentration-dependent manner by dasatinib. Using drug-resistant gatekeeper mutants, we show that SFKs (particularly SRC and FYN), as well as EGFR, are relevant targets for dasatinib action. The combined mass spectrometry–based approach described here provides a system-level view of dasatinib action in cancer cells and suggests both functional targets and a rationale for combinatorial therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein kinase targets of dasatinib in lung cancer cells identified by chemical and phosphoproteomics.
Figure 2: Effects of siRNA-mediated knockdown of SRC, LYN, BRK and ACK on lung cancer cell viability.
Figure 3: Rescue effects of dasatinib target gatekeeper mutants on lung cancer cell viability.
Figure 4: Effects of SRC gatekeeper mutation on downstream signaling and apoptosis.
Figure 5: Effects of EGFR gatekeeper mutation on downstream signaling and apoptosis.

Similar content being viewed by others

References

  1. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    Article  CAS  Google Scholar 

  2. Paez, J.G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  Google Scholar 

  3. Lynch, T.J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  Google Scholar 

  4. Puri, N. et al. A selective small molecule inhibitor of c-Met, PHA665752, inhibits tumorigenicity and angiogenesis in mouse lung cancer xenografts. Cancer Res. 67, 3529–3534 (2007).

    Article  CAS  Google Scholar 

  5. Song, L. et al. Dasatinib (BMS-354825) selectively induces apoptosis in lung cancer cells dependent on epidermal growth factor receptor signaling for survival. Cancer Res. 66, 5542–5548 (2006).

    Article  CAS  Google Scholar 

  6. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA 101, 13306–13311 (2004).

    Article  CAS  Google Scholar 

  7. Kim, L.C., Song, L. & Haura, E.B. Src kinases as therapeutic targets for cancer. Nat. Rev. Clin. Oncol. 6, 587–595 (2009).

    Article  Google Scholar 

  8. Yeatman, T.J. A renaissance for SRC. Nat. Rev. Cancer 4, 470–480 (2004).

    Article  CAS  Google Scholar 

  9. Ishizawar, R. & Parsons, S.J. c-Src and cooperating partners in human cancer. Cancer Cell 6, 209–214 (2004).

    Article  CAS  Google Scholar 

  10. Tice, D.A., Biscardi, J.S., Nickles, A.L. & Parsons, S.J. Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc. Natl. Acad. Sci. USA 96, 1415–1420 (1999).

    Article  CAS  Google Scholar 

  11. Maa, M.C., Leu, T.H., McCarley, D.J., Schatzman, R.C. & Parsons, S.J. Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc. Natl. Acad. Sci. USA 92, 6981–6985 (1995).

    Article  CAS  Google Scholar 

  12. Fu, Y.N. et al. EGFR mutants found in non-small cell lung cancer show different levels of sensitivity to suppression of Src: implications in targeting therapy. Oncogene 27, 957–965 (2008).

    Article  CAS  Google Scholar 

  13. McDermott, U. et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc. Natl. Acad. Sci. USA 104, 19936–19941 (2007).

    Article  CAS  Google Scholar 

  14. Zhang, Q. et al. SRC family kinases mediate epidermal growth factor receptor ligand cleavage, proliferation, and invasion of head and neck cancer cells. Cancer Res. 64, 6166–6173 (2004).

    Article  CAS  Google Scholar 

  15. Zhang, J. et al. SRC-family kinases are activated in non-small cell lung cancer and promote the survival of epidermal growth factor receptor-dependent cell lines. Am. J. Pathol. 170, 366–376 (2007).

    Article  CAS  Google Scholar 

  16. Margolis, B. et al. High-efficiency expression/cloning of epidermal growth factor-receptor-binding proteins with Src homology 2 domains. Proc. Natl. Acad. Sci. USA 89, 8894–8898 (1992).

    Article  CAS  Google Scholar 

  17. Osherov, N. & Levitzki, A. Epidermal-growth-factor-dependent activation of the src-family kinases. Eur. J. Biochem. 225, 1047–1053 (1994).

    Article  CAS  Google Scholar 

  18. Martin, G.S. The hunting of the Src. Nat. Rev. Mol. Cell Biol. 2, 467–475 (2001).

    Article  CAS  Google Scholar 

  19. Fabian, M.A. et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23, 329–336 (2005).

    Article  CAS  Google Scholar 

  20. Karaman, M.W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).

    Article  CAS  Google Scholar 

  21. Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25, 1035–1044 (2007).

    Article  CAS  Google Scholar 

  22. Rix, U. et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 110, 4055–4063 (2007).

    Article  CAS  Google Scholar 

  23. Peri, S. et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13, 2363–2371 (2003).

    Article  CAS  Google Scholar 

  24. Rix, U. & Superti-Furga, G. Target profiling of small molecules by chemical proteomics. Nat. Chem. Biol. 5, 616–624 (2009).

    Article  CAS  Google Scholar 

  25. Hantschel, O. et al. The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proc. Natl. Acad. Sci. USA 104, 13283–13288 (2007).

    Article  CAS  Google Scholar 

  26. Legate, K.R., Montanez, E., Kudlacek, O. & Fassler, R. ILK, PINCH and parvin: the tIPP of integrin signalling. Nat. Rev. Mol. Cell Biol. 7, 20–31 (2006).

    Article  CAS  Google Scholar 

  27. Heroult, M., Schaffner, F. & Augustin, H.G. Eph receptor and ephrin ligand-mediated interactions during angiogenesis and tumor progression. Exp. Cell Res. 312, 642–650 (2006).

    Article  CAS  Google Scholar 

  28. Ford, C.E. et al. Expression and mutation analysis of the discoidin domain receptors 1 and 2 in non-small cell lung carcinoma. Br. J. Cancer 96, 808–814 (2007).

    Article  CAS  Google Scholar 

  29. Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007).

    Article  CAS  Google Scholar 

  30. Stover, D.R., Becker, M., Liebetanz, J. & Lydon, N.B. Src phosphorylation of the epidermal growth factor receptor at novel sites mediates receptor interaction with Src and P85 alpha. J. Biol. Chem. 270, 15591–15597 (1995).

    Article  CAS  Google Scholar 

  31. Mueller, K.L., Hunter, L.A., Ethier, S.P. & Boerner, J.L. Met and c-Src cooperate to compensate for loss of epidermal growth factor receptor kinase activity in breast cancer cells. Cancer Res. 68, 3314–3322 (2008).

    Article  CAS  Google Scholar 

  32. Kamalati, T., Jolin, H.E., Fry, M.J. & Crompton, M.R. Expression of the BRK tyrosine kinase in mammary epithelial cells enhances the coupling of EGF signalling to PI 3-kinase and Akt, via erbB3 phosphorylation. Oncogene 19, 5471–5476 (2000).

    Article  CAS  Google Scholar 

  33. Ostrander, J.H., Daniel, A.R., Lofgren, K., Kleer, C.G. & Lange, C.A. Breast tumor kinase (protein tyrosine kinase 6) regulates heregulin-induced activation of ERK5 and p38 MAP kinases in breast cancer cells. Cancer Res. 67, 4199–4209 (2007).

    Article  CAS  Google Scholar 

  34. Shen, F., Lin, Q., Gu, Y., Childress, C. & Yang, W. Activated Cdc42-associated kinase 1 is a component of EGF receptor signaling complex and regulates EGF receptor degradation. Mol. Biol. Cell 18, 732–742 (2007).

    Article  CAS  Google Scholar 

  35. Nur-E-Kamal, A. et al. Requirement of activated Cdc42-associated kinase for survival of v-Ras-transformed mammalian cells. Mol. Cancer Res. 3, 297–305 (2005).

    Article  CAS  Google Scholar 

  36. Park, S.I. et al. Targeting SRC family kinases inhibits growth and lymph node metastases of prostate cancer in an orthotopic nude mouse model. Cancer Res. 68, 3323–3333 (2008).

    Article  CAS  Google Scholar 

  37. Du, J. et al. Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nat. Biotechnol. 27, 77–83 (2009).

    Article  CAS  Google Scholar 

  38. Remsing Rix, L.L. et al. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia 23, 477–485 (2009).

    Article  CAS  Google Scholar 

  39. Gandhi, J. et al. Alterations in genes of the EGFR signaling pathway and their relationship to EGFR tyrosine kinase inhibitor sensitivity in lung cancer cell lines. PLoS One 4, e4576 (2009).

    Article  Google Scholar 

  40. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    Article  Google Scholar 

  41. Kobayashi, S. et al. Transcriptional profiling identifies cyclin D1 as a critical downstream effector of mutant epidermal growth factor receptor signaling. Cancer Res. 66, 11389–11398 (2006).

    Article  CAS  Google Scholar 

  42. Yang, L. et al. Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res. 64, 4394–4399 (2004).

    Article  CAS  Google Scholar 

  43. van der Horst, E.H. et al. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc. Natl. Acad. Sci. USA 102, 15901–15906 (2005).

    Article  CAS  Google Scholar 

  44. Yokoyama, N. & Miller, W.T. Biochemical properties of the Cdc42-associated tyrosine kinase ACK1. Substrate specificity, authphosphorylation, and interaction with Hck. J. Biol. Chem. 278, 47713–47723 (2003).

    Article  CAS  Google Scholar 

  45. Satoh, T., Kato, J., Nishida, K. & Kaziro, Y. Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation. FEBS Lett. 386, 230–234 (1996).

    Article  CAS  Google Scholar 

  46. Yang, W., Lin, Q., Zhao, J., Guan, J.L. & Cerione, R.A. The nonreceptor tyrosine kinase ACK2, a specific target for Cdc42 and a negative regulator of cell growth and focal adhesion complexes. J. Biol. Chem. 276, 43987–43993 (2001).

    Article  CAS  Google Scholar 

  47. Coker, K.J., Staros, J.V. & Guyer, C.A. A kinase-negative epidermal growth factor receptor that retains the capacity to stimulate DNA synthesis. Proc. Natl. Acad. Sci. USA 91, 6967–6971 (1994).

    Article  CAS  Google Scholar 

  48. Bandyopadhyay, A. et al. Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-beta type I receptor kinase inhibitor. Cancer Res. 66, 6714–6721 (2006).

    Article  CAS  Google Scholar 

  49. Takanami, I. Increased expression of integrin-linked kinase is associated with shorter survival in non-small cell lung cancer. BMC Cancer 5, 1 (2005).

    Article  Google Scholar 

  50. Shah, N.P. et al. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell 14, 485–493 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Lee (Bristol-Myers Squibb Oncology) for providing dasatinib, Genentech and OSI Pharmaceuticals for providing erlotinib, K. Rikova (Cell Signaling Technology) for providing NSCLC tumor spectral count data, Cell Signaling Technology for allowing reproduction of the kinome map, G. Durnberger for data uploading to PRIDE, J. Du (Broad Institute) and T. Golub (Broad Institute) for providing lentiviral constructs, T. Yoshida for helpful discussions and P. Johnston for administrative assistance. We thank W. Pao (Vanderbilt University) for the cDNA for L858R EGFR and L858R T790M EGFR and N. Mahajan (Moffitt Cancer Center) for the ACK. We thank J. Cheng (Moffitt Cancer Center) for the triciribine. The work was partially funded by grants from the US National Functional Genomics Center, the Moffitt Cancer Center SPORE in Lung Cancer (P50-CA119997), Joan's Legacy/LUNGevity Foundation (E.B.H.), the Austrian Federal Ministry of Science and Research within the GEN-AU program (GZ200.142/1-VI/I/2006 and GZ 200.145/1-VI/1/2006) and the Austrian Academy of Sciences. This work has been supported in part by the Proteomics Core, the Molecular Biology and Sequencing Core, and the Flow Cytometry Core at the H. Lee Moffitt Cancer Center & Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

J.L. designed and performed the experiments, analyzed and interpreted the data, performed statistical analyses, made the figures and wrote the manuscript. U.R. performed all chemical proteomics experiments, analyzed and interpreted the data, performed statistical analyses, made the figures and wrote the manuscript. B.F. performed all extracted ion chromatogram experiments, analyzed and interpreted the data, performed statistical analyses, made the figures and wrote the manuscript. A.E. provided statistical and bioinformatics support for interpreting LC-MS/MS data. S.E. advised on the research, performed statistical and bioinformatics support for interpreting LC-MS/MS data and critically read the manuscript. J.G. helped perform pY peptide purification from lung cancer cell lines. Y.B. provided technical assistance with cell lines. L.S. provided technical help with mutagenesis. K.L.B. analyzed chemical proteomics experiments and operated mass spectrometers. J.C. analyzed chemical proteomics experimental data and performed bioinformatics analyses. J.K. advised on the research, supervised all US-based proteomics experiments and critically read the manuscript. G.S.-F. supervised the chemical proteomics experiments, advised on the research and critically read the manuscript. E.B.H. had overall responsibility for this research and edited the manuscript.

Corresponding authors

Correspondence to Giulio Superti-Furga, John Koomen or Eric B Haura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–11 and Supplementary Tables 1 and 2 (PDF 1706 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Rix, U., Fang, B. et al. A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat Chem Biol 6, 291–299 (2010). https://doi.org/10.1038/nchembio.332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.332

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research