Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Turning enzymes ON with small molecules

Abstract

Drug discovery and chemical genetic efforts typically focus on the identification and design of inhibitors or loss-of-function probes as a means to perturb enzyme function. These tools are effective in determining the physiological consequence of ablating the activity of a specific enzyme. Remarkably, nearly a dozen examples of non-natural small molecules that activate enzyme catalysis have been identified within the past decade. In aggregate, these studies delineate four unique activation mechanisms that the small molecules exploit. These complementary gain-of-function probes offer a way to address the sufficiency of an enzyme to drive a particular cellular phenotype, and they also provide new opportunities for drug discovery. This review covers the identification and characterization of these unique small-molecule activators.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mechanisms of small-molecule-induced enzyme activation.
Figure 2: Allosteric activation of glucokinase.
Figure 3: Allosteric activation of PDK1.
Figure 4: Small-molecule-induced activation of proproteases.
Figure 5: Small-molecule binding to regulatory subunits leads to enzyme activation.

Accession codes

Accessions

Protein Data Bank

References

  1. Alaimo, P.J., Shogren-Knaak, M.A. & Shokat, K.M. Chemical genetic approaches for the elucidation of signaling pathways. Curr. Opin. Chem. Biol. 5, 360–367 (2001).

    CAS  PubMed  Google Scholar 

  2. Cravatt, B.F. & Sorensen, E.J. Chemical strategies for the global analysis of protein function. Curr. Opin. Chem. Biol. 4, 663–668 (2000).

    CAS  PubMed  Google Scholar 

  3. Stockwell, B.R. Chemical genetics: ligand-based discovery of gene function. Nat. Rev. Genet. 1, 116–125 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cárdenas, M.L. & Cornish-Bowden, A. Characteristics necessary for an interconvertible enzyme cascade to generate a highly sensitive response to an effector. Biochem. J. 257, 339–345 (1989).

    PubMed  PubMed Central  Google Scholar 

  5. Goldbeter, A. & Koshland, D.E. Sensitivity amplification in biochemical systems. Q. Rev. Biophys. 15, 555–591 (1982).

    CAS  PubMed  Google Scholar 

  6. Szedlacsek, S.E., Cárdenas, M.L. & Cornish-Bowden, A. Response coefficients of interconvertible enzyme cascades towards effectors that act on one or both modifier enzymes. Eur. J. Biochem. 204, 807–813 (1992).

    CAS  PubMed  Google Scholar 

  7. Bishop, A.C. & Chen, V.L. Brought to life: targeted activation of enzyme function with small molecules. J. Chem. Biol. 2, 1–9 (2009).

    PubMed  Google Scholar 

  8. Cárdenas, M.L., Cornish-Bowden, A. & Ureta, T. Evolution and regulatory role of the hexokinases. Biochim. Biophys. Acta 1401, 242–264 (1998).

    PubMed  Google Scholar 

  9. Matschinsky, F. Assessing the potential of glucokinase activators in diabetes therapy. Nat. Rev. Drug Discov. 8, 399–416 (2009).

    CAS  PubMed  Google Scholar 

  10. Pal, M. Recent advances in glucokinase activators for the treatment of type 2 diabetes. Drug Discov. Today 14, 784–792 (2009).

    CAS  PubMed  Google Scholar 

  11. Matschinsky, F.M. et al. The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy. Diabetes 55, 1–12 (2006).

    CAS  PubMed  Google Scholar 

  12. Gidh-Jain, M. et al. Glucokinase mutations associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: implications for structure/function relationships. Proc. Natl. Acad. Sci. USA 90, 1932–1936 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. de la Iglesia, N., Veiga-da-Cunha, M., Van Schaftingen, E., Guinovart, J.J. & Ferrer, J.C. Glucokinase regulatory protein is essential for the proper subcellular localisation of liver glucokinase. FEBS Lett. 456, 332–338 (1999).

    CAS  PubMed  Google Scholar 

  14. Anderka, O. et al. Biophysical characterization of the interaction between hepatic glucokinase and its regulatory protein: impact of physiological and pharmacological effectors. J. Biol. Chem. 283, 31333–31340 (2008).

    CAS  PubMed  Google Scholar 

  15. Veiga-da-Cunha, M. & Van Schaftingen, E. Identification of fructose 6-phosphate- and fructose 1-phosphate-binding residues in the regulatory protein of glucokinase. J. Biol. Chem. 277, 8466–8473 (2002).

    CAS  PubMed  Google Scholar 

  16. Grimsby, J. et al. Allosteric activators of glucokinase: potential role in diabetes therapy. Science 301, 370–373 (2003).

    CAS  PubMed  Google Scholar 

  17. Ralph, E.C., Thomson, J., Almaden, J. & Sun, S. Glucose modulation of glucokinase activation by small molecules. Biochemistry 47, 5028–5036 (2008).

    CAS  PubMed  Google Scholar 

  18. Guertin, K.R. & Grimsby, J. Small molecule glucokinase activators as glucose lowering agents: a new paradigm for diabetes therapy. Curr. Med. Chem. 13, 1839–1843 (2006).

    CAS  PubMed  Google Scholar 

  19. Kamata, K., Mitsuya, M., Nishimura, T., Eiki, J.-I. & Nagata, Y. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure 12, 429–438 (2004).

    CAS  PubMed  Google Scholar 

  20. Milne, J.C. & Denu, J.M. The Sirtuin family: therapeutic targets to treat diseases of aging. Curr. Opin. Chem. Biol. 12, 11–17 (2008).

    CAS  PubMed  Google Scholar 

  21. Longo, V.D. & Kennedy, B.K. Sirtuins in aging and age-related disease. Cell 126, 257–268 (2006).

    CAS  PubMed  Google Scholar 

  22. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, S.J., Defossez, P.A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000).

    CAS  PubMed  Google Scholar 

  24. Cohen, H.Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392 (2004).

    CAS  PubMed  Google Scholar 

  25. Lavu, S., Boss, O., Elliott, P.J. & Lambert, P.D. Sirtuins–novel therapeutic targets to treat age-associated diseases. Nat. Rev. Drug Discov. 7, 841–853 (2008).

    CAS  PubMed  Google Scholar 

  26. Kaeberlein, M., Kirkland, K.T., Fields, S. & Kennedy, B.K. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2, E296 ( 2004).

    PubMed  PubMed Central  Google Scholar 

  27. Finkel, T., Deng, C.-X. & Mostoslavsky, R. Recent progress in the biology and physiology of sirtuins. Nature 460, 587–591 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Anderson, R.M., Bitterman, K.J., Wood, J.G., Medvedik, O. & Sinclair, D.A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181–185 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, J.-E., Chen, J. & Lou, Z. DBC1 is a negative regulator of SIRT1. Nature 451, 583–586 (2008).

    CAS  PubMed  Google Scholar 

  30. Zhao, W. et al. Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451, 587–590 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, E.-J., Kho, J.-H., Kang, M.-R. & Um, S.-J. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol. Cell 28, 277–290 (2007).

    CAS  PubMed  Google Scholar 

  32. Smith, B.C., Hallows, W.C. & Denu, J.M. Mechanisms and molecular probes of sirtuins. Chem. Biol. 15, 1002–1013 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Howitz, K.T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003).

    CAS  PubMed  Google Scholar 

  34. Kaeberlein, M. et al. Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 280, 17038–17045 (2005).

    CAS  PubMed  Google Scholar 

  35. Milne, J.C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pacholec, M. et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. published online, doi:10.1074/jbc.M109.088682 (8 January 2010).

  37. Frödin, M. et al. A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO J. 21, 5396–5407 (2002).

    PubMed  PubMed Central  Google Scholar 

  38. Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).

    CAS  PubMed  Google Scholar 

  39. Biondi, R.M. Phosphoinositide-dependent protein kinase 1, a sensor of protein conformation. Trends Biochem. Sci. 29, 136–142 (2004).

    CAS  PubMed  Google Scholar 

  40. Biondi, R.M. et al. High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO J. 21, 4219–4228 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Biondi, R.M. et al. Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO J. 19, 979–988 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Engel, M. et al. Allosteric activation of the protein kinase PDK1 with low molecular weight compounds. EMBO J. 25, 5469–5480 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Stroba, A. et al. 3,5-Diphenylpent-2-enoic acids as allosteric activators of the protein kinase PDK1: structure-activity relationships and thermodynamic characterization of binding as paradigms for PIF-binding pocket-targeting compounds. J. Med. Chem. 52, 4683–4693 (2009).

    CAS  PubMed  Google Scholar 

  44. Hindie, V. et al. Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1. Nat. Chem. Biol. 5, 758–764 (2009).

    CAS  PubMed  Google Scholar 

  45. Biondi, R.M., Kieloch, A., Currie, R.A., Deak, M. & Alessi, D.R. The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO J. 20, 4380–4390 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pellicena, P. & Kuriyan, J. Protein-protein interactions in the allosteric regulation of protein kinases. Curr. Opin. Struct. Biol. 16, 702–709 (2006).

    CAS  PubMed  Google Scholar 

  47. Tappan, E. & Chamberlin, A.R. Activation of protein phosphatase 1 by a small molecule designed to bind to the enzyme's regulatory site. Chem. Biol. 15, 167–174 (2008).

    CAS  PubMed  Google Scholar 

  48. Balasubramanyam, K., Swaminathan, V., Ranganathan, A. & Kundu, T.K. Small molecule modulators of histone acetyltransferase p300. J. Biol. Chem. 278, 19134–19140 (2003).

    CAS  PubMed  Google Scholar 

  49. Reineke, J. et al. Autocatalytic cleavage of Clostridium difficile toxin B. Nature 446, 415–419 (2007).

    CAS  PubMed  Google Scholar 

  50. Egerer, M., Giesemann, T., Jank, T., Satchell, K.J.F. & Aktories, K. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity. J. Biol. Chem. 282, 25314–25321 (2007).

    CAS  PubMed  Google Scholar 

  51. Egerer, M., Giesemann, T., Herrmann, C. & Aktories, K. Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate. J. Biol. Chem. 284, 3389–3395 (2009).

    CAS  PubMed  Google Scholar 

  52. Lupardus, P.J., Shen, A., Bogyo, M. & Garcia, K.C. Small molecule-induced allosteric activation of the Vibrio cholerae RTX cysteine protease domain. Science 322, 265–268 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shen, A. et al. Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin. Nat. Chem. Biol. 5, 469–478 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Prochazkova, K. & Satchell, K.J.F. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing of the Vibrio cholerae multifunctional autoprocessing RTX toxin. J. Biol. Chem. 283, 23656–23664 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Prochazkova, K. et al. Structural and molecular mechanism for autoprocessing of MARTX toxin of Vibrio cholerae at multiple sites. J. Biol. Chem. 284, 26557–26568 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Pop, C. & Salvesen, G. Human caspases: activation, specificity and regulation. J. Biol. Chem. 284, 21777–21781 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Creagh, E.M., Conroy, H. & Martin, S.J. Caspase-activation pathways in apoptosis and immunity. Immunol. Rev. 193, 10–21 (2003).

    CAS  PubMed  Google Scholar 

  58. Yi, C.H. & Yuan, J. The Jekyll and Hyde functions of caspases. Dev. Cell 16, 21–34 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Stennicke, H.R. & Salvesen, G.S. Caspases - controlling intracellular signals by protease zymogen activation. Biochim. Biophys. Acta 1477, 299–306 (2000).

    CAS  PubMed  Google Scholar 

  60. Earnshaw, W.C., Martins, L.M. & Kaufmann, S.H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383–424 (1999).

    CAS  PubMed  Google Scholar 

  61. Salvesen, G.S. & Riedl, S.J. Caspase mechanisms. Adv. Exp. Med. Biol. 615, 13–23 (2008).

    CAS  PubMed  Google Scholar 

  62. Roy, S. et al. Maintenance of caspase-3 proenzyme dormancy by an intrinsic “safety catch” regulatory tripeptide. Proc. Natl. Acad. Sci. USA 98, 6132–6137 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hardy, J.A., Lam, J., Nguyen, J.T., O'Brien, T. & Wells, J.A. Discovery of an allosteric site in the caspases. Proc. Natl. Acad. Sci. USA 101, 12461–12466 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Scheer, J.M., Romanowski, M.J. & Wells, J.A. A common allosteric site and mechanism in caspases. Proc. Natl. Acad. Sci. USA 103, 7595–7600 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gao, J., Sidhu, S.S. & Wells, J.A. Two-state selection of conformation-specific antibodies. Proc. Natl. Acad. Sci. USA 106, 3071–3076 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chai, J. et al. Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Cell 107, 399–407 (2001).

    CAS  PubMed  Google Scholar 

  67. Riedl, S.J. et al. Structural basis for the activation of human procaspase-7. Proc. Natl. Acad. Sci. USA 98, 14790–14795 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Putt, K.S. et al. Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat. Chem. Biol. 2, 543–550 (2006).

    CAS  PubMed  Google Scholar 

  69. Denault, J.-B. et al. Small molecules not direct activators of caspases. Nat. Chem. Biol. 3, 519 (2007); author reply 3, 520 (2007).

    Google Scholar 

  70. Peterson, Q.P. et al. PAC-1 activates procaspase-3 in vitro through relief of zinc-mediated inhibition. J. Mol. Biol. 388, 144–158 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wolan, D.W., Zorn, J.A., Gray, D.C. & Wells, J.A. Small-molecule activators of a proenzyme. Science 326, 853–858 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Svingen, P.A. et al. Components of the cell death machine and drug sensitivity of the National Cancer Institute Cell Line Panel. Clin. Cancer Res. 10, 6807–6820 (2004).

    CAS  PubMed  Google Scholar 

  73. Zhang, B.B., Zhou, G. & Li, C. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 9, 407–416 (2009).

    PubMed  Google Scholar 

  74. Hardie, D.G. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144, 5179–5183 (2003).

    CAS  PubMed  Google Scholar 

  75. Hardie, D.G. AMP-activated protein kinase as a drug target. Annu. Rev. Pharmacol. Toxicol. 47, 185–210 (2007).

    CAS  PubMed  Google Scholar 

  76. Amodeo, G.A., Rudolph, M.J. & Tong, L. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature 449, 492–495 (2007).

    CAS  PubMed  Google Scholar 

  77. Crute, B.E., Seefeld, K., Gamble, J., Kemp, B.E. & Witters, L.A. Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J. Biol. Chem. 273, 35347–35354 (1998).

    CAS  PubMed  Google Scholar 

  78. Chen, L. et al. Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature 459, 1146–1149 (2009).

    CAS  PubMed  Google Scholar 

  79. Xiao, B. et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496–500 (2007).

    CAS  PubMed  Google Scholar 

  80. Townley, R. & Shapiro, L. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase. Science 315, 1726–1729 (2007).

    CAS  PubMed  Google Scholar 

  81. Kahn, B.B., Alquier, T., Carling, D. & Hardie, D.G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25 (2005).

    CAS  PubMed  Google Scholar 

  82. Sabina, R.L., Holmes, E.W. & Becker, M.A. The enzymatic synthesis of 5-amino-4-imidazolecarboxamide riboside triphosphate (ZTP). Science 223, 1193–1195 (1984).

    CAS  PubMed  Google Scholar 

  83. Corton, J.M., Gillespie, J.G., Hawley, S.A. & Hardie, D.G. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 229, 558–565 (1995).

    CAS  PubMed  Google Scholar 

  84. Cool, B. et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3, 403–416 (2006).

    CAS  PubMed  Google Scholar 

  85. Göransson, O. et al. Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J. Biol. Chem. 282, 32549–32560 (2007).

    PubMed  Google Scholar 

  86. Scott, J.W. et al. Thienopyridone drugs are selective activators of AMP-activated protein kinase beta1-containing complexes. Chem. Biol. 15, 1220–1230 (2008).

    CAS  PubMed  Google Scholar 

  87. Sanders, M.J. et al. Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J. Biol. Chem. 282, 32539–32548 (2007).

    CAS  PubMed  Google Scholar 

  88. Zhao, G. et al. Discovery and SAR development of thienopyridones: a class of small molecule AMPK activators. Bioorg. Med. Chem. Lett. 17, 3254–3257 (2007).

    CAS  PubMed  Google Scholar 

  89. Pang, T. et al. Small molecule antagonizes autoinhibition and activates AMP-activated protein kinase in cells. J. Biol. Chem. 283, 16051–16060 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, C., Cheng, C.Y., Saldanha, S.A. & Taylor, S.S. PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Cell 130, 1032–1043 (2007).

    CAS  PubMed  Google Scholar 

  91. Taylor, S.S. et al. Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design. Biochim. Biophys. Acta 1784, 16–26 (2008).

    CAS  PubMed  Google Scholar 

  92. Yang, J. et al. Contribution of non-catalytic core residues to activity and regulation in protein kinase A. J. Biol. Chem. 284, 6241–6248 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Saldanha, S.A., Kaler, G., Cottam, H.B., Abagyan, R. & Taylor, S.S. Assay principle for modulators of protein-protein interactions and its application to non-ATP-competitive ligands targeting protein kinase A. Anal. Chem. 78, 8265–8272 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Budas, G.R., Koyanagi, T., Churchill, E.N. & Mochly-Rosen, D. Competitive inhibitors and allosteric activators of protein kinase C isoenzymes: a personal account and progress report on transferring academic discoveries to the clinic. Biochem. Soc. Trans. 35, 1021–1026 (2007).

    CAS  PubMed  Google Scholar 

  95. Csukai, M. & Mochly-Rosen, D. Pharmacologic modulation of protein kinase C isozymes: the role of RACKs and subcellular localisation. Pharmacol. Res. 39, 253–259 (1999).

    CAS  PubMed  Google Scholar 

  96. Churchill, E.N., Qvit, N. & Mochly-Rosen, D. Rationally designed peptide regulators of protein kinase C. Trends Endocrinol. Metab. 20, 25–33 (2009).

    CAS  PubMed  Google Scholar 

  97. Silverman, R.H. Implications for RNase L in prostate cancer biology. Biochemistry 42, 1805–1812 (2003).

    CAS  PubMed  Google Scholar 

  98. Wreschner, D.H., McCauley, J.W., Skehel, J.J. & Kerr, I.M. Interferon action–sequence specificity of the ppp(A2′p)nA-dependent ribonuclease. Nature 289, 414–417 (1981).

    CAS  PubMed  Google Scholar 

  99. Tanaka, N. et al. Structural basis for recognition of 2′,5′-linked oligoadenylates by human ribonuclease L. EMBO J. 23, 3929–3938 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tanaka, N. et al. Molecular basis for recognition of 2′,5′-linked oligoadenylates by the N-terminal ankyrin repeat domain of human ribonuclease L. Nucleic Acids Symp. Ser. (Oxf) 323–324 (2005).

    Google Scholar 

  101. Nakanishi, M., Goto, Y. & Kitade, Y. 2–5A induces a conformational change in the ankyrin-repeat domain of RNase L. Proteins 60, 131–138 (2005).

    CAS  PubMed  Google Scholar 

  102. Nakanishi, M. et al. Functional characterization of 2′,5′-linked oligoadenylate binding determinant of human RNase L. J. Biol. Chem. 280, 41694–41699 (2005).

    CAS  PubMed  Google Scholar 

  103. Thakur, C.S. et al. Small-molecule activators of RNase L with broad-spectrum antiviral activity. Proc. Natl. Acad. Sci. USA 104, 9585–9590 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Papa, F.R., Zhang, C., Shokat, K. & Walter, P. Bypassing a kinase activity with an ATP-competitive drug. Science 302, 1533–1537 (2003).

    CAS  PubMed  Google Scholar 

  105. McPherson, J.D. et al. A physical map of the human genome. Nature 409, 934–941 (2001).

    CAS  PubMed  Google Scholar 

  106. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS  PubMed  Google Scholar 

  107. Chen, C.-H. et al. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 321, 1493–1495 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Okuzumi, T. et al. Inhibitor hijacking of Akt activation. Nat. Chem. Biol. 5, 484–493 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sergina, N.V. et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445, 437–441 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Sadowsky, S. Mahrus and D. Wolan for helpful discussions and N. Agard, J. Diaz, D. Wildes and D. Wolan for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A Wells.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zorn, J., Wells, J. Turning enzymes ON with small molecules. Nat Chem Biol 6, 179–188 (2010). https://doi.org/10.1038/nchembio.318

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.318

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing