Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A combined method for producing homogeneous glycoproteins with eukaryotic N-glycosylation

This article has been updated

Abstract

We describe a new method for producing homogeneous eukaryotic N-glycoproteins. The method involves the engineering and functional transfer of the Campylobacter jejuni glycosylation machinery in Escherichia coli to express glycosylated proteins with the key GlcNAc-Asn linkage. The bacterial glycans were then trimmed and remodeled in vitro by enzymatic transglycosylation to fulfill a eukaryotic N-glycosylation. It provides a potentially general platform for producing eukaryotic N-glycoproteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the protein expression and glycosylation engineering system.
Figure 2: Production of homogenous N-glycoproteins.

Similar content being viewed by others

Change history

  • 18 March 2010

    In the version of this article initially published online, an extra blue square corresponding to a GlcNAc monomer was shown in the transglycosylation step in Figure 1 and the Graphical Abstract. Also, panels g and h of Figure 2 were mistakenly swapped. The errors have been corrected for the print, PDF and HTML versions of this article.

References

  1. Dwek, R.A. Chem. Rev. 96, 683–720 (1996).

    Article  CAS  Google Scholar 

  2. Helenius, A. & Aebi, M. Science 291, 2364–2369 (2001).

    Article  CAS  Google Scholar 

  3. Gamblin, D.P., Scanlan, E.M. & Davis, B.G. Chem. Rev. 109, 131–163 (2009).

    Article  CAS  Google Scholar 

  4. Rich, J.R. & Withers, S.G. Nat. Chem. Biol. 5, 206–215 (2009).

    Article  CAS  Google Scholar 

  5. Bennett, C.S. & Wong, C.H. Chem. Soc. Rev. 36, 1227–1238 (2007).

    Article  CAS  Google Scholar 

  6. Szymanski, C.M., Yao, R., Ewing, C.P., Trust, T.J. & Guerry, P. Mol. Microbiol. 32, 1022–1030 (1999).

    Article  CAS  Google Scholar 

  7. Young, N.M. et al. J. Biol. Chem. 277, 42530–42539 (2002).

    Article  CAS  Google Scholar 

  8. Wacker, M. et al. Science 298, 1790–1793 (2002).

    Article  CAS  Google Scholar 

  9. Kowarik, M. et al. Science 314, 1148–1150 (2006).

    Article  CAS  Google Scholar 

  10. Li, B., Zeng, Y., Hauser, S., Song, H. & Wang, L.X. J. Am. Chem. Soc. 127, 9692–9693 (2005).

    Article  CAS  Google Scholar 

  11. Li, B., Song, H., Hauser, S. & Wang, L.X. Org. Lett. 8, 3081–3084 (2006).

    Article  CAS  Google Scholar 

  12. Ochiai, H., Huang, W. & Wang, L.X. J. Am. Chem. Soc. 130, 13790–13803 (2008).

    Article  CAS  Google Scholar 

  13. Wei, Y. et al. Biochemistry 47, 10294–10304 (2008).

    Article  CAS  Google Scholar 

  14. Umekawa, M. et al. J. Biol. Chem. 283, 4469–4479 (2008).

    Article  CAS  Google Scholar 

  15. Huang, W. et al. J. Am. Chem. Soc. 131, 2214–2223 (2009).

    Article  CAS  Google Scholar 

  16. Feldman, M.F. et al. Proc. Natl. Acad. Sci. USA 102, 3016–3021 (2005).

    Article  CAS  Google Scholar 

  17. Wacker, M. et al. Proc. Natl. Acad. Sci. USA 103, 7088–7093 (2006).

    Article  CAS  Google Scholar 

  18. Alaimo, C. et al. EMBO J. 25, 967–976 (2006).

    Article  CAS  Google Scholar 

  19. Lehrer, J., Vigeant, K.A., Tatar, L.D. & Valvano, M.A. J. Bacteriol. 189, 2618–2628 (2007).

    Article  CAS  Google Scholar 

  20. Kowarik, M. et al. EMBO J. 25, 1957–1966 (2006).

    Article  CAS  Google Scholar 

  21. Troutman, J.M. & Imperiali, B. Biochemistry 48, 2807–2816 (2009).

    Article  CAS  Google Scholar 

  22. Jefferis, R. Biotechnol. Prog. 21, 11–16 (2005).

    Article  CAS  Google Scholar 

  23. Anthony, R.M. et al. Science 320, 373–376 (2008).

    Article  CAS  Google Scholar 

  24. Villa, A. et al. Int. J. Cancer 122, 2405–2413 (2008).

    Article  CAS  Google Scholar 

  25. Holliger, P. & Hudson, P.J. Nat. Biotechnol. 23, 1126–1136 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Aebi and Wang labs for fruitful discussions. This work was supported in part by the Swiss National Science Foundation (grant 3100AQ-105541 to M.A.), the Eidgenössische Technische Hochschule Zurich and the US National Institutes of Health (grant GM080374 to L.-X.W.). We thank K. Takegawa (Kyushu University) for providing the pGEX-2T/Endo-A plasmid and K. Yamamoto (Kyoto University) for providing the pET23b-Endo-M plasmid, which were used to express the endo enzymes. F.S. and C. Lizak are members of the Zurich PhD Program in Molecular Life Sciences.

Author information

Authors and Affiliations

Authors

Contributions

F.S. engineered the glycosylation pathway, characterized proteins and wrote the manuscript. W.H. trimmed and remodeled glycans and characterized products. C. Li remodeled glycans and characterized products. B.L.S. performed preliminary MS analyses of glycosylated AcrA. C. Lizak engineered the CH2 domain. A.P. characterized the F8 protein. S.N. conceived the original idea and performed preliminary experiments. D.N. developed F8 and supervised the research. M.A. supervised the research and wrote the manuscript. L.-X.W. conceived the original idea, supervised the research and wrote the manuscript. All authors contributed to editing the manuscript.

Corresponding authors

Correspondence to Markus Aebi or Lai-Xi Wang.

Ethics declarations

Competing interests

D.N. is a co-founder and shareholder of Philogen, the company that owns the F8 antibody.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Results, and Supplementary Figures 1–9 (PDF 645 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, F., Huang, W., Li, C. et al. A combined method for producing homogeneous glycoproteins with eukaryotic N-glycosylation. Nat Chem Biol 6, 264–266 (2010). https://doi.org/10.1038/nchembio.314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.314

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research