Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The 2′-OH group at the group II intron terminus acts as a proton shuttle

Abstract

Group II introns are self-splicing ribozymes that excise themselves from precursor RNAs and catalyze the joining of flanking exons. Excised introns can behave as parasitic RNA molecules: they can catalyze their own insertion into DNA and RNA via a reverse splicing reaction. Previous studies have identified mechanistic roles for various functional groups located in the catalytic core of the intron and within target molecules. Here we introduce a new method for synthesizing long RNA molecules with a modified nucleotide at the 3′ terminus. This modification allows us to examine the mechanistic role of functional groups adjacent to the reaction nucleophile. During reverse splicing, the 3′-OH group of the intron terminus attacks the phosphodiester linkage of spliced exon sequences. Here we show that the adjacent 2′-OH group on the intron terminus plays an essential role in activating the nucleophile by stripping away a proton from the 3′-OH and then shuttling it from the active site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and splicing pathways of group II introns.
Figure 2: Synthesis and verification of intron RNAs with substitutions of the 2′-OH group at the 3′-terminal nucleotide.
Figure 3: Reverse splicing assay.
Figure 4: Suggested proton shuttle mechanism.

Similar content being viewed by others

References

  1. Pyle, A.M. & Lambowitz, A.M. Group II introns: ribozymes that splice RNA and invade DNA. in The RNA World (eds. Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 469–505 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2006).

  2. Vallès, Y., Halanych, K.M., Boore, J.L. & Group, I.I. Introns break new boundaries: presence in a bilaterian′s genome. PLoS One 3, e1488 (2008).

    Article  Google Scholar 

  3. Pyle, A.M. Group II introns: catalysts for splicing, genomic change and evolution. in Ribozymes and RNA Catalysis (eds. Lilley, D.M.J. & Eckstein, F.) 201–228 (RCS Publishing, Cambridge, UK, 2008).

  4. de Lencastre, A., Hamill, S. & Pyle, A.M. A single active-site region for a group II intron. Nat. Struct. Mol. Biol. 12, 626–627 (2005).

    Article  CAS  Google Scholar 

  5. Toor, N., Keating, K.S., Taylor, S.D. & Pyle, A.M. Crystal structure of a self-spliced group II intron. Science 320, 77–82 (2008).

    Article  CAS  Google Scholar 

  6. Toor, N., Rajashankar, K., Keating, K.S. & Pyle, A.M. Structural basis for exon recognition by a group II intron. Nat. Struct. Mol. Biol. 15, 1221–1222 (2008).

    Article  CAS  Google Scholar 

  7. Dai, L. et al. A three-dimensional model of a group II intron RNA and its interaction with the intron-encoded reverse transcriptase. Mol. Cell 30, 472–485 (2008).

    Article  CAS  Google Scholar 

  8. Daniels, D.L., Michels, W.J. Jr. & Pyle, A.M. Two competing pathways for self-splicing by group II introns: a quantitative analysis of in vitro reaction rates and products. J. Mol. Biol. 256, 31–49 (1996).

    Article  CAS  Google Scholar 

  9. Chu, V.T., Liu, Q., Podar, M., Perlman, P.S. & Pyle, A.M. More than one way to splice an RNA: branching without a bulge and splicing without branching in group II introns. RNA 4, 1186–1202 (1998).

    Article  CAS  Google Scholar 

  10. Podar, M., Perlman, P.S. & Padgett, R.A. The two steps of group II intron self-splicing are mechanistically distinguishable. RNA 4, 890–900 (1998).

    Article  CAS  Google Scholar 

  11. Roitzsch, M. & Pyle, A.M. The linear form of a group II intron catalyzes efficient autocatalytic reverse splicing, establishing a potential for mobility. RNA 15, 473–482 (2009).

    Article  CAS  Google Scholar 

  12. Aizawa, Y., Xiang, Q., Lambowitz, A.M. & Pyle, A.M. The pathway for DNA recognition and RNA integration by a group II intron retrotransposon. Mol. Cell 11, 795–805 (2003).

    Article  CAS  Google Scholar 

  13. Roitzsch, M. Group II introns. in Wiley Encyclopedia of Chemical Biology vol. 2 (ed. Begley, T.P.) 232–239 (John Wiley & Sons, Hoboken, New Jersey, USA, 2008).

  14. Padgett, R.A., Podar, M., Boulanger, S.C. & Perlman, P.S. The stereochemical course of group II intron self-splicing. Science 266, 1685–1688 (1994).

    Article  CAS  Google Scholar 

  15. Gordon, P.M. & Piccirilli, J.A. Metal ion coordination by the AGC triad in domain 5 contributes to group II intron catalysis. Nat. Struct. Biol. 8, 893–898 (2001).

    Article  CAS  Google Scholar 

  16. Podar, M., Perlman, P.S. & Padgett, R.A. Stereochemical selectivity of group II intron splicing, reverse splicing, and hydrolysis reactions. Mol. Cell. Biol. 15, 4466–4478 (1995).

    Article  CAS  Google Scholar 

  17. Sontheimer, E.J., Gordon, P.M. & Piccirilli, J.A. Metal ion catalysis during group II intron self-splicing: parallels with the spliceosome. Genes Dev. 13, 1729–1741 (1999).

    Article  CAS  Google Scholar 

  18. Gordon, P.M., Fong, R. & Piccirilli, J.A. A second divalent metal ion in the group II intron reaction center. Chem. Biol. 14, 607–612 (2007).

    Article  CAS  Google Scholar 

  19. Steitz, T.A. & Steitz, J.A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. USA 90, 6498–6502 (1993).

    Article  CAS  Google Scholar 

  20. Griffin, E.A. Jr., Qin, Z., Michels, W.J. Jr. & Pyle, A.M. Group II intron ribozymes that cleave DNA and RNA linkages with similar efficiency, and lack contacts with substrate 2′-hydroxyl groups. Chem. Biol. 2, 761–770 (1995).

    Article  CAS  Google Scholar 

  21. Gordon, P.M. et al. New strategies for exploring RNA′s 2′-OH expose the importance of solvent during group II intron catalysis. Chem. Biol. 11, 237–246 (2004).

    Article  CAS  Google Scholar 

  22. Huang, Z. & Szostak, J.W. A simple method for 3′-labeling of RNA. Nucleic Acids Res. 24, 4360–4361 (1996).

    Article  CAS  Google Scholar 

  23. Milligan, J.F., Groebe, D.R., Witherell, G.W. & Uhlenbeck, O.C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798 (1987).

    Article  CAS  Google Scholar 

  24. Kao, C., Rüdisser, S. & Zheng, M. A simple and efficient method to transcribe RNAs with reduced 3′ heterogeneity. Methods 23, 201–205 (2001).

    Article  CAS  Google Scholar 

  25. Astatke, M., Ng, K., Grindley, N.D. & Joyce, C.M. A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proc. Natl. Acad. Sci. USA 95, 3402–3407 (1998).

    Article  CAS  Google Scholar 

  26. Pyle, A.M., Chu, V.T., Jankowsky, E. & Boudvillain, M. Using DNAzymes to cut, process, and map RNA molecules for structural studies or modification. Methods Enzymol. 317, 140–146 (2000).

    Article  CAS  Google Scholar 

  27. Kuzmic, P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal. Biochem. 237, 260–273 (1996).

    Article  CAS  Google Scholar 

  28. Dunitz, J.D. & Taylor, R. Organic fluorine hardly ever accepts hydrogen bonds. Chem. Eur. J. 3, 89–98 (1997).

    Article  CAS  Google Scholar 

  29. Aurup, H., Tuschl, T., Benseler, F., Ludwig, J. & Eckstein, F. Oligonucleotide duplexes containing 2′-amino-2′-deoxycytidines: thermal stability and chemical reactivity. Nucleic Acids Res. 22, 20–24 (1994).

    Article  CAS  Google Scholar 

  30. Shan, S.O. & Herschlag, D. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2′-moiety of the guanosine nucleophile in the tetrahymena group I ribozyme. Biochemistry 38, 10958–10975 (1999).

    Article  CAS  Google Scholar 

  31. Roitzsch, M., Anorbe, M.G., Sanz Miguel, P.J., Müller, B. & Lippert, B. The role of intramolecular hydrogen bonding on nucleobase acidification following metal coordination: possible implications of an “indirect” role of metals in acid-base catalysis of nucleic acids. J. Biol. Inorg. Chem. 10, 800–812 (2005).

    Article  CAS  Google Scholar 

  32. Serjeant, E.P. & Dempsey, B. Ionization constants of organic acids in solution. in UPAC Chemical Data Series no. 23 (Pergamon Press, Oxford, UK, 1979).

  33. Sigel, R.K., Vaidya, A. & Pyle, A.M. Metal ion binding sites in a group II intron core. Nat. Struct. Biol. 7, 1111–1116 (2000).

    Article  CAS  Google Scholar 

  34. Yoshida, A., Shan, S., Herschlag, D. & Piccirilli, J.A. The role of the cleavage site 2′-hydroxyl in the Tetrahymena group I ribozyme reaction. Chem. Biol. 7, 85–96 (2000).

    Article  CAS  Google Scholar 

  35. Oyelere, A.K., Kardon, J.R. & Strobel, S.A. pK(a) perturbation in genomic Hepatitis Delta Virus ribozyme catalysis evidenced by nucleotide analogue interference mapping. Biochemistry 41, 3667–3675 (2002).

    Article  CAS  Google Scholar 

  36. Das, S.R. & Piccirilli, J.A. General acid catalysis by the hepatitis delta virus ribozyme. Nat. Chem. Biol. 1, 45–52 (2005).

    Article  CAS  Google Scholar 

  37. Gordon, P.M., Sontheimer, E.J. & Piccirilli, J.A. Kinetic characterization of the second step of group II intron splicing: role of metal ions and the cleavage site 2′-OH in catalysis. Biochemistry 39, 12939–12952 (2000).

    Article  CAS  Google Scholar 

  38. Weinger, J.S., Parnell, K.M., Dorner, S., Green, R. & Strobel, S.A. Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat. Struct. Mol. Biol. 11, 1101–1106 (2004).

    Article  CAS  Google Scholar 

  39. Lang, K., Erlacher, M., Wilson, D.N., Micura, R. & Polacek, N. The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis. Chem. Biol. 15, 485–492 (2008).

    Article  CAS  Google Scholar 

  40. Gordon, P.M., Sontheimer, E.J. & Piccirilli, J.A. Metal ion catalysis during the exon-ligation step of nuclear pre-mRNA splicing: extending the parallels between the spliceosome and group II introns. RNA 6, 199–205 (2000).

    Article  CAS  Google Scholar 

  41. Wincott, F. et al. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res. 23, 2677–2684 (1995).

    Article  CAS  Google Scholar 

  42. England, T.E. & Uhlenbeck, O.C. 3′-terminal labelling of RNA with T4 RNA ligase. Nature 275, 560–561 (1978).

    Article  CAS  Google Scholar 

  43. Polesky, A.H., Dahlberg, M.E., Benkovic, S.J., Grindley, N.D. & Joyce, C.M. Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli. J. Biol. Chem. 267, 8417–8428 (1992).

    CAS  PubMed  Google Scholar 

  44. Fedorova, O., Su, L.J. & Pyle, A.M. Group II introns: highly specific endonucleases with modular structures and diverse catalytic functions. Methods 28, 323–335 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.M. Joyce (Yale University) for providing the E710A mutant protein. This work was supported by generous funding from the US National Institutes of Health (GM50313) and from the Howard Hughes Medical Institute. A.M.P. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

M.R. designed and performed kinetic experiments and analyzed the data. M.R. designed and conducted the method for generation of 3′-terminally modified RNAs including their purity control, but with the exception of experiments involving fluorescein labeling. O.F. designed and performed all control experiments involving fluorescein labeling and prepared the modified DNA primers and all synthetic RNA oligonucleotides. M.R. interpreted the results and wrote the manuscript. O.F. helped interpret the results. O.F. and A.M.P. edited the manuscript. A.M.P provided funding for the research and supervised all experimentation.

Corresponding author

Correspondence to Anna Marie Pyle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roitzsch, M., Fedorova, O. & Pyle, A. The 2′-OH group at the group II intron terminus acts as a proton shuttle. Nat Chem Biol 6, 218–224 (2010). https://doi.org/10.1038/nchembio.312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.312

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing