Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

AMPA receptors and synaptic plasticity: a chemist's perspective

Abstract

The ability of the mammalian brain to undergo experience-based adaptations is among its most important and fascinating properties. Such plasticity is reflected in the capacity of neuronal activity to continuously modify the neural circuitry that underlies thought, feeling and behavior. The locus of this plasticity occurs at the level of synapses, the specialized junctions where one neuron receives chemical signals from another. Synaptic connections become stronger or weaker in response to specific patterns of activity. This activity drives regulated changes in the neurotransmitter released by presynaptic neurons and in the receptors localized on postsynaptic neurons. Detailed studies of these receptors have advanced our understanding of synaptic plasticity. However, many key questions remain unresolved, and over the past decade innovative chemical approaches have emerged to tackle them. Here we review these chemical tools and their application to unraveling the molecular basis of synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LTP and LTD.
Figure 2: AMPA receptor structure and function.
Figure 3: Trafficking of AMPA receptors.
Figure 4: Structures of the chemical genetic and chemical tools discussed in the text.

Similar content being viewed by others

References

  1. Kauer, J.A. & Malenka, R.C. Synaptic plasticity and addiction. Nat. Rev. Neurosci. 8, 844–858 (2007).

    CAS  PubMed  Google Scholar 

  2. Stephan, K.E., Baldeweg, T. & Friston, K.J. Synaptic plasticity and dysconnection in schizophrenia. Biol. Psychiatry 59, 929–939 (2006).

    CAS  PubMed  Google Scholar 

  3. Kessels, H.W. & Malinow, R. Synaptic AMPA receptor plasticity and behavior. Neuron 61, 340–350 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Citri, A. & Malenka, R.C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008).

    PubMed  Google Scholar 

  5. Neves, G., Cooke, S.F. & Bliss, T.V. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat. Rev. Neurosci. 9, 65–75 (2008).

    CAS  PubMed  Google Scholar 

  6. Spedding, M., Neau, I. & Harsing, L. Brain plasticity and pathology in psychiatric disease: sites of action for potential therapy. Curr. Opin. Pharmacol. 3, 33–40 (2003).

    CAS  PubMed  Google Scholar 

  7. Hebb, D.O. The Organization of Behavior: a Neuropsychological Theory (Wiley, New York, 1949).

    Google Scholar 

  8. Bliss, T.V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    CAS  Google Scholar 

  9. Bliss, T.V. & Gardner-Medwin, A.R. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 357–374 (1973).

    CAS  Google Scholar 

  10. Whitlock, J.R., Heynen, A.J., Shuler, M.G. & Bear, M.F. Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097 (2006).

    CAS  PubMed  Google Scholar 

  11. Pastalkova, E. et al. Storage of spatial information by the maintenance mechanism of LTP. Science 313, 1141–1144 (2006).

    CAS  PubMed  Google Scholar 

  12. Derkach, V.A., Oh, M.C., Guire, E.S. & Soderling, T.R. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat. Rev. Neurosci. 8, 101–113 (2007).

    CAS  PubMed  Google Scholar 

  13. Shepherd, J.D. & Huganir, R.L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643 (2007).

    CAS  PubMed  Google Scholar 

  14. Kerchner, G.A. & Nicoll, R.A. Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat. Rev. Neurosci. 9, 813–825 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Collingridge, G.L., Olsen, R.W., Peters, J. & Spedding, M. A nomenclature for ligand-gated ion channels. Neuropharmacology 56, 2–5 (2009).

    CAS  PubMed  Google Scholar 

  16. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  17. Palmer, C.L., Cotton, L. & Henley, J.M. The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol. Rev. 57, 253–277 (2005).

    CAS  PubMed  Google Scholar 

  18. Mayer, M.L. & Armstrong, N. Structure and function of glutamate receptor ion channels. Annu. Rev. Physiol. 66, 161–181 (2004).

    CAS  PubMed  Google Scholar 

  19. Sobolevsky, A.I., Rosconi, M.P. & Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kato, A.S., Siuda, E.R., Nisenbaum, E.S. & Bredt, D.S. AMPA receptor subunit-specific regulation by a distinct family of type II TARPs. Neuron 59, 986–996 (2008).

    CAS  PubMed  Google Scholar 

  21. Milstein, A.D., Zhou, W., Karimzadegan, S., Bredt, D.S. & Nicoll, R.A. TARP subtypes differentially and dose-dependently control synaptic AMPA receptor gating. Neuron 55, 905–918 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schwenk, J. et al. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science 323, 1313–1319 (2009).

    CAS  PubMed  Google Scholar 

  23. Cho, C.H., St.- Gelais, F., Zhang, W., Tomita, S. & Howe, J.R. Two families of TARP isoforms that have distinct effects on the kinetic properties of AMPA receptors and synaptic currents. Neuron 55, 890–904 (2007).

    CAS  PubMed  Google Scholar 

  24. Soto, D., Coombs, I.D., Kelly, L., Farrant, M. & Cull-Candy, S.G. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nat. Neurosci. 10, 1260–1267 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tomita, S. et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435, 1052–1058 (2005).

    CAS  PubMed  Google Scholar 

  26. Vandenberghe, W., Nicoll, R.A. & Bredt, D.S. Stargazin is an AMPA receptor auxiliary subunit. Proc. Natl. Acad. Sci. USA 102, 485–490 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bats, C., Groc, L. & Choquet, D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53, 719–734 (2007).

    CAS  PubMed  Google Scholar 

  28. Menuz, K., Kerchner, G.A., O'Brien, J.L. & Nicoll, R.A. Critical role for TARPs in early development despite broad functional redundancy. Neuropharmacology 56, 22–29 (2009).

    CAS  PubMed  Google Scholar 

  29. Newpher, T.M. & Ehlers, M.D. Glutamate receptor dynamics in dendritic microdomains. Neuron 58, 472–497 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Triller, A. & Choquet, D. New concepts in synaptic biology derived from single-molecule imaging. Neuron 59, 359–374 (2008).

    CAS  PubMed  Google Scholar 

  31. Kennedy, M.J. & Ehlers, M.D. Organelles and trafficking machinery for postsynaptic plasticity. Annu. Rev. Neurosci. 29, 325–362 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sutton, M.A. & Schuman, E.M. Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49–58 (2006).

    CAS  PubMed  Google Scholar 

  33. Wenthold, R.J., Petralia, R.S., Blahos, J. II & Niedzielski, A.S. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J. Neurosci. 16, 1982–1989 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sans, N. et al. Aberrant formation of glutamate receptor complexes in hippocampal neurons of mice lacking the GluR2 AMPA receptor subunit. J. Neurosci. 23, 9367–9373 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Conrad, K.L. et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454, 118–121 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Argilli, E., Sibley, D.R., Malenka, R.C., England, P.M. & Bonci, A. Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area. J. Neurosci. 28, 9092–9100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, S.Q. & Cull-Candy, S.G. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454–458 (2000).

    CAS  PubMed  Google Scholar 

  38. Shi, S., Hayashi, Y., Esteban, J.A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

    CAS  PubMed  Google Scholar 

  39. Malinow, R. AMPA receptor trafficking and long-term potentiation. Phil. Trans. R. Soc. Lond. B 358, 707–714 (2003).

    CAS  Google Scholar 

  40. Shi, S.H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    CAS  PubMed  Google Scholar 

  41. Ashby, M.C., Ibaraki, K. & Henley, J.M. It's green outside: tracking cell surface proteins with pH-sensitive GFP. Trends Neurosci. 27, 257–261 (2004).

    CAS  PubMed  Google Scholar 

  42. Meng, Y., Zhang, Y. & Jia, Z. Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3. Neuron 39, 163–176 (2003).

    CAS  PubMed  Google Scholar 

  43. Zamanillo, D. et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284, 1805–1811 (1999).

    CAS  PubMed  Google Scholar 

  44. Jensen, V. et al. A juvenile form of postsynaptic hippocampal long-term potentiation in mice deficient for the AMPA receptor subunit GluR-A. J. Physiol. (Lond.) 553, 843–856 (2003).

    CAS  Google Scholar 

  45. Hoffman, D.A., Sprengel, R. & Sakmann, B. Molecular dissection of hippocampal theta-burst pairing potentiation. Proc. Natl. Acad. Sci. USA 99, 7740–7745 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu, W. et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 62, 254–268 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Andrasfalvy, B.K., Smith, M.A., Borchardt, T., Sprengel, R. & Magee, J.C. Impaired regulation of synaptic strength in hippocampal neurons from GluR1-deficient mice. J. Physiol. (Lond.) 552, 35–45 (2003).

    CAS  Google Scholar 

  48. Lester, H.A., Krouse, M.E., Nass, M.M., Wassermann, N.H. & Erlanger, B.F. A covalently bound photoisomerizable agonist: comparison with reversibly bound agonists at Electrophorus electroplaques. J. Gen. Physiol. 75, 207–232 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).

    CAS  PubMed  Google Scholar 

  50. Fortin, D.L. et al. Photochemical control of endogenous ion channels and cellular excitability. Nat. Methods 5, 331–338 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    CAS  PubMed  Google Scholar 

  52. Tour, O., Meijer, R.M., Zacharias, D.A., Adams, S.R. & Tsien, R.Y. Genetically targeted chromophore-assisted light inactivation. Nat. Biotechnol. 21, 1505–1508 (2003).

    CAS  PubMed  Google Scholar 

  53. Poskanzer, K.E., Marek, K.W., Sweeney, S.T. & Davis, G.W. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426, 559–563 (2003).

    CAS  PubMed  Google Scholar 

  54. Marek, K.W. & Davis, G.W. Transgenically encoded protein photoinactivation (FlAsH-FALI): acute inactivation of synaptotagmin I. Neuron 36, 805–813 (2002).

    CAS  PubMed  Google Scholar 

  55. Wang, F.S. & Jay, D.G. Chromophore-assisted laser inactivation (CALI): probing protein function in situ with a high degree of spatial and temporal resolution. Trends Cell Biol. 6, 442–445 (1996).

    CAS  PubMed  Google Scholar 

  56. Stroffekova, K., Proenza, C. & Beam, K.G. The protein-labeling reagent FLASH-EDT2 binds not only to CCXXCC motifs but also non-specifically to endogenous cysteine-rich proteins. Pflugers Arch. 442, 859–866 (2001).

    CAS  PubMed  Google Scholar 

  57. Griffin, B.A., Adams, S.R., Jones, J. & Tsien, R.Y. Fluorescent labeling of recombinant proteins in living cells with FlAsH. Methods Enzymol. 327, 565–578 (2000).

    CAS  PubMed  Google Scholar 

  58. Marks, K.M., Braun, P.D. & Nolan, G.P. A general approach for chemical labeling and rapid, spatially controlled protein inactivation. Proc. Natl. Acad. Sci. USA 101, 9982–9987 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ju, W. et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat. Neurosci. 7, 244–253 (2004).

    CAS  PubMed  Google Scholar 

  60. Groc, L. et al. Surface trafficking of neurotransmitter receptor: comparison between single-molecule/quantum dot strategies. J. Neurosci. 27, 12433–12437 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Giepmans, B.N., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    CAS  PubMed  Google Scholar 

  62. Alivisatos, A.P., Gu, W. & Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76 (2005).

    CAS  PubMed  Google Scholar 

  63. Lavis, L.D. & Raines, R.T. Bright ideas for chemical biology. ACS Chem. Biol. 3, 142–155 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003).

    CAS  PubMed  Google Scholar 

  65. Howarth, M., Takao, K., Hayashi, Y. & Ting, A.Y. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl. Acad. Sci. USA 102, 7583–7588 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, I., Choi, Y.A. & Ting, A.Y. Phage display evolution of a peptide substrate for yeast biotin ligase and application to two-color quantum dot labeling of cell surface proteins. J. Am. Chem. Soc. 129, 6619–6625 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu, W. et al. Compact biocompatible quantum dots functionalized for cellular imaging. J. Am. Chem. Soc. 130, 1274–1284 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Adams, S.R. & Tsien, R.Y. Controlling cell chemistry with caged compounds. Annu. Rev. Physiol. 55, 755–784 (1993).

    CAS  PubMed  Google Scholar 

  69. Thompson, S.M. et al. Flashy science: controlling neural function with light. J. Neurosci. 25, 10358–10365 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ellis-Davies, G.C. Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat. Methods 4, 619–628 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. DiGregorio, D.A., Rothman, J.S., Nielsen, T.A. & Silver, R.A. Desensitization properties of AMPA receptors at the cerebellar mossy fiber granule cell synapse. J. Neurosci. 27, 8344–8357 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    CAS  PubMed  Google Scholar 

  73. Kandler, K., Katz, L.C. & Kauer, J.A. Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors. Nat. Neurosci. 1, 119–123 (1998).

    CAS  PubMed  Google Scholar 

  74. Matsuzaki, M., Honkura, N., Ellis-Davies, G.C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bagal, A.A., Kao, J.P., Tang, C.M. & Thompson, S.M. Long-term potentiation of exogenous glutamate responses at single dendritic spines. Proc. Natl. Acad. Sci. USA 102, 14434–14439 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Volgraf, M. et al. Reversibly caged glutamate: a photochromic agonist of ionotropic glutamate receptors. J. Am. Chem. Soc. 129, 260–261 (2007).

    CAS  PubMed  Google Scholar 

  77. Chambers, J.J., Gouda, H., Young, D.M., Kuntz, I.D. & England, P.M. Photochemically knocking out glutamate receptors in vivo. J. Am. Chem. Soc. 126, 13886–13887 (2004).

    CAS  PubMed  Google Scholar 

  78. Adesnik, H., Nicoll, R.A. & England, P.M. Photoinactivation of native AMPA receptors reveals their real-time trafficking. Neuron 48, 977–985 (2005).

    CAS  PubMed  Google Scholar 

  79. England, P.M. Rapid photoinactivation of native AMPA receptors on live cells using ANQX. Sci. STKE 2006, pl1 (2006).

    PubMed  Google Scholar 

  80. Cruz, L.A. et al. 6-Azido-7-nitro-1,4-dihydroquinoxaline-2,3-dione (ANQX) forms an irreversible bond to the active site of the GluR2 AMPA receptor. J. Med. Chem. 51, 5856–5860 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Stromgaard, K., Jensen, L.S. & Vogensen, S.B. Polyamine toxins: development of selective ligands for ionotropic receptors. Toxicon 45, 249–254 (2005).

    CAS  PubMed  Google Scholar 

  82. Nilsen, A. & England, P.M. A subtype-selective, use-dependent inhibitor of native AMPA receptors. J. Am. Chem. Soc. 129, 4902–4903 (2007).

    CAS  PubMed  Google Scholar 

  83. Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E. & Webb, W.W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jaskolski, F. & Henley, J.M. Synaptic receptor trafficking: the lateral point of view. Neuroscience 158, 19–24 (2009).

    CAS  PubMed  Google Scholar 

  85. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    CAS  Google Scholar 

  86. Triller, A. & Choquet, D. Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! Trends Neurosci. 28, 133–139 (2005).

    CAS  PubMed  Google Scholar 

  87. Borgdorff, A.J. & Choquet, D. Regulation of AMPA receptor lateral movements. Nature 417, 649–653 (2002).

    CAS  PubMed  Google Scholar 

  88. Bear, M.F., Connors, B.W. & Paradiso, M.A. Neuroscience: Exploring the Brain (Lippincott Williams & Wilkins, Philadelphia, 2007).

    Google Scholar 

  89. Jane, D.E., Lodge, D. & Collingridge, G.L. Kainate receptors: pharmacology, function and therapeutic potential. Neuropharmacology 56, 90–113 (2009).

    CAS  PubMed  Google Scholar 

  90. Pinheiro, P.S. & Mulle, C. Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat. Rev. Neurosci. 9, 423–436 (2008).

    CAS  PubMed  Google Scholar 

  91. Palmer, M.J., Isaac, J.T. & Collingridge, G.L. Multiple, developmentally regulated expression mechanisms of long-term potentiation at CA1 synapses. J. Neurosci. 24, 4903–4911 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mansour, M., Nagarajan, N., Nehring, R.B., Clements, J.D. & Rosenmund, C. Heteromeric AMPA receptors assemble with a preferred subunit stoichiometry and spatial arrangement. Neuron 32, 841–853 (2001).

    CAS  PubMed  Google Scholar 

  93. Isaac, J.T., Ashby, M. & McBain, C.J. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54, 859–871 (2007).

    CAS  PubMed  Google Scholar 

  94. Greger, I.H., Ziff, E.B. & Penn, A.C. Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci. 30, 407–416 (2007).

    CAS  PubMed  Google Scholar 

  95. Greger, I.H., Khatri, L., Kong, X. & Ziff, E.B. AMPA receptor tetramerization is mediated by Q/R editing. Neuron 40, 763–774 (2003).

    CAS  PubMed  Google Scholar 

  96. Washburn, M.S., Numberger, M., Zhang, S. & Dingledine, R. Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J. Neurosci. 17, 9393–9406 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Jonas, P. & Burnashev, N. Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron 15, 987–990 (1995).

    CAS  PubMed  Google Scholar 

  98. Hume, R.I., Dingledine, R. & Heinemann, S.F. Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253, 1028–1031 (1991).

    CAS  PubMed  Google Scholar 

  99. Blaschke, M. et al. A single amino acid determines the subunit-specific spider toxin block of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor channels. Proc. Natl. Acad. Sci. USA 90, 6528–6532 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Washburn, M.S. & Dingledine, R. Block of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins. J. Pharmacol. Exp. Ther. 278, 669–678 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Shoichet and K. Shokat for their critical review of the manuscript. We apologize to those whose work we could not cite because of space limitations. J.J.F. is supported by grants from the Wheeler Center and the Sandler Foundation. Work in the lab of P.M.E. is supported by the US National Institutes of Health, the McKnight Foundation and the Sandler Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela M England.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleming, J., England, P. AMPA receptors and synaptic plasticity: a chemist's perspective. Nat Chem Biol 6, 89–97 (2010). https://doi.org/10.1038/nchembio.298

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.298

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing