Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

In vitro reconstruction of tetronate RK-682 biosynthesis

Abstract

The protein phosphatase inhibitor RK-682 is one of a number of potentially valuable tetronate polyketide natural products. Understanding how the tetronate ring is formed has been frustrated by the inaccessibility of the putative substrates. We report the heterologous expression of rk genes in Saccharopolyspora erythraea and reconstitution of the RK-682 pathway using recombinant enzymes, and we show that RkD is the enzyme required for RK-682 formation from acyl carrier protein–bound substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthesis of tetronate RK-682.
Figure 2: Genetic analysis of the RK-682 biosynthetic gene cluster.
Figure 3: In vitro reconstitution of RK-682 biosynthesis.

Similar content being viewed by others

References

  1. Weissman, K.J. & Leadlay, P.F. Nat. Rev. Microbiol. 3, 925–936 (2005).

    Article  CAS  Google Scholar 

  2. Jia, X.Y. et al. Chem. Biol. 13, 575–585 (2006).

    Article  CAS  Google Scholar 

  3. Bister, B. et al. Angew. Chem. Int. Edn Engl. 43, 2574–2576 (2004).

    Article  CAS  Google Scholar 

  4. Demydchuk, Y. et al. ChemBioChem 9, 1136–1145 (2008).

    Article  CAS  Google Scholar 

  5. Zhang, H. et al. J. Am. Chem. Soc. 129, 14670–14683 (2007).

    Article  CAS  Google Scholar 

  6. Fang, J. et al. J. Bacteriol. 190, 6014–6025 (2008).

    Article  CAS  Google Scholar 

  7. Zhao, P. et al. Org. Biomol. Chem. 7, 1454–1460 (2009).

    Article  CAS  Google Scholar 

  8. Hamaguchi, T., Sudo, T. & Osada, H. FEBS Lett. 372, 54–58 (1995).

    Article  CAS  Google Scholar 

  9. Fecik, R.A. Nat. Chem. Biol. 3, 531–532 (2007).

    Article  CAS  Google Scholar 

  10. Kwon, S.J., Lee, M.Y., Ku, B., Sherman, D.H. & Dordick, J.S. ACS Chem. Biol. 2, 419–425 (2007).

    Article  CAS  Google Scholar 

  11. Balibar, C.J., Howard-Jones, A.R. & Walsh, C.T. Nat. Chem. Biol. 3, 584–592 (2007).

    Article  CAS  Google Scholar 

  12. Xie, X., Meehan, M.J., Xu, W., Dorrestein, P.C. & Tang, Y. J. Am. Chem. Soc. 131, 8388–8389 (2009).

    Article  CAS  Google Scholar 

  13. Sodeoka, M. et al. Chem. Pharm. Bull. (Tokyo) 49, 206–212 (2001).

    Article  CAS  Google Scholar 

  14. Roggo, B.E., Hug, P., Moss, S., Raschdorf, F. & Peter, H.H. J. Antibiot. (Tokyo) 47, 143–147 (1994).

    Article  CAS  Google Scholar 

  15. Dorrestein, P.C. et al. J. Am. Chem. Soc. 128, 10386–10387 (2006).

    Article  CAS  Google Scholar 

  16. Sun, Y., Hong, H., Gillies, F., Spencer, J.B. & Leadlay, P.F. ChemBioChem 9, 150–156 (2008).

    Article  CAS  Google Scholar 

  17. Rowe, C.J., Cortés, J., Gaisser, S., Staunton, J. & Leadlay, P.F. Gene 216, 215–223 (1998).

    Article  CAS  Google Scholar 

  18. Wilkinson, C.J. et al. J. Mol. Microbiol. Biotechnol. 4, 417–426 (2002).

    CAS  PubMed  Google Scholar 

  19. Butler, A.R., Bate, N. & Cundliffe, E. Chem. Biol. 6, 287–292 (1999).

    Article  CAS  Google Scholar 

  20. Heathcote, M.L., Leadlay, P.F. & Staunton, J. Chem. Biol. 8, 207–220 (2001).

    Article  CAS  Google Scholar 

  21. Babbitt, P.C. et al. Biochemistry 31, 5594–5604 (1992).

    Article  CAS  Google Scholar 

  22. Gaitatzis, N., Hans, A., Müller, R. & Beyer, S. J. Biochem. 129, 119–124 (2001).

    Article  CAS  Google Scholar 

  23. Chen, A.Y., Cane, D.E. & Khosla, C. Chem. Biol. 14, 784–792 (2007).

    Article  CAS  Google Scholar 

  24. Kwon, H.J. et al. Science 297, 1327–1330 (2002).

    Article  CAS  Google Scholar 

  25. Stinear, T.P. et al. Proc. Natl. Acad. Sci. USA 101, 1345–1349 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Biotechnology and Biological Sciences Research Council through project grant BB/D018943/1 to P.F.L. F.H. was supported by a Deutsche Forschungsgemeinschaft Research Fellowship and a Marie Curie Intra-European Fellowship. M.T. was supported by a fellowship from the Herchel Smith Fund of Cambridge University.

Author information

Authors and Affiliations

Authors

Contributions

Y.S., H.O. and P.F.L. formulated the project; Y.S., Y.D. and J.C. carried out cloning and analysis of the gene cluster; Y.S. carried out gene knockouts, heterologous expression and in vitro reconstitution; F.H. carried out chemical synthesis and part of the in vitro reconstitution; M.T. carried out high-resolution mass analysis; Y.S., H.O. and P.F.L. wrote the manuscript.

Corresponding authors

Correspondence to Yuhui Sun or Peter F Leadlay.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 6686 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Hahn, F., Demydchuk, Y. et al. In vitro reconstruction of tetronate RK-682 biosynthesis. Nat Chem Biol 6, 99–101 (2010). https://doi.org/10.1038/nchembio.285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing