Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An in vitro translation, selection and amplification system for peptide nucleic acids

Abstract

Methods to evolve synthetic, rather than biological, polymers could significantly expand the functional potential of polymers that emerge from in vitro evolution. Requirements for synthetic polymer evolution include (i) sequence-specific polymerization of synthetic building blocks on an amplifiable template, (ii) display of the newly translated polymer strand in a manner that allows it to adopt folded structures, (iii) selection of synthetic polymer libraries for desired binding or catalytic properties and (iv) amplification of template sequences that survive selection in a manner that allows subsequent translation. Here we report the development of such a system for peptide nucleic acids (PNAs) using a set of 12 PNA pentamer building blocks. We validated the system by performing six iterated cycles of translation, selection and amplification on a library of 4.3 × 108 PNA-encoding DNA templates and observed >1,000,000-fold overall enrichment of a template encoding a biotinylated (streptavidin-binding) PNA. These results collectively provide an experimental foundation for PNA evolution in the laboratory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies to evolve biological and synthetic polymers.
Figure 2: A PNA genetic code that exhibits uniform DNA-templated polymerization.
Figure 3: Sequence-specific DNA-templated PNA polymerization using all 12 building blocks in a variety of contexts.
Figure 4: Translation of a DNA template into PNA and displacement of the resulting PNA strand.
Figure 5: A full cycle of translation, displacement, simulated selection and PCR amplification for a single DNA template encoding a PNA 40-mer.
Figure 6: Model selection of a DNA-templated PNA 40-mer library.

Similar content being viewed by others

References

  1. Orgel, L.E. Unnatural selection in chemical systems. Acc. Chem. Res. 28, 109–118 (1995).

    Article  CAS  Google Scholar 

  2. Leitzel, J.C. & Lynn, D.G. Template-directed ligation: from DNA towards different versatile templates. Chem. Rec. 1, 53–62 (2001).

    Article  CAS  Google Scholar 

  3. Brudno, Y. & Liu, D.R. Recent progress toward the templated synthesis and directed evolution of sequence-defined synthetic polymers. Chem. Biol. 16, 265–276 (2009).

    Article  CAS  Google Scholar 

  4. Keefe, A.D. & Cload, S.T. SELEX with modified nucleotides. Curr. Opin. Chem. Biol. 12, 448–456 (2008).

    Article  CAS  Google Scholar 

  5. Wang, L., Xie, J. & Schultz, P.G. Expanding the genetic code. Annu. Rev. Biophys. Biomol. Struct. 35, 225–249 (2006).

    Article  Google Scholar 

  6. Li, X., Zhan, Z.Y., Knipe, R. & Lynn, D.G. DNA-catalyzed polymerization. J. Am. Chem. Soc. 124, 746–747 (2002).

    Article  CAS  Google Scholar 

  7. Kozlov, I.A., De Bouvere, B., Van Aerschot, A., Herdewijn, P. & Orgel, L.E. Efficient transfer of information from hexitol nucleic acids to RNA during nonenzymatic oligomerization. J. Am. Chem. Soc. 121, 5856–5859 (1999).

    Article  CAS  Google Scholar 

  8. Kleiner, R.E., Brudno, Y., Birnbaum, M.E. & Liu, D.R. DNA-templated polymerization of side-chain-functionalized peptide nucleic acid aldehydes. J. Am. Chem. Soc. 130, 4646–4659 (2008).

    Article  CAS  Google Scholar 

  9. Rosenbaum, D.M. & Liu, D.R. Efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid aldehydes. J. Am. Chem. Soc. 125, 13924–13925 (2003).

    Article  CAS  Google Scholar 

  10. Egholm, M. et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365, 566–568 (1993).

    Article  CAS  Google Scholar 

  11. Englund, E.A. & Appella, D.H. Gamma-substituted peptide nucleic acids constructed from L-lysine are a versatile scaffold for multifunctional display. Angew. Chem. Int. Edn Engl. 119, 1436–1440 (2007).

    Article  Google Scholar 

  12. Datta, B., Bier, M.E., Roy, S. & Armitage, B.A. Quadruplex formation by a guanine-rich PNA oligomer. J. Am. Chem. Soc. 127, 4199–4207 (2005).

    Article  CAS  Google Scholar 

  13. Sharma, N.K. & Ganesh, K.N. PNA C–C+ i-motif: superior stability of PNA TC8 tetraplexes compared to DNA TC8 tetraplexes at low pH. Chem. Commun. (Camb.) 4330–4332 (2005).

  14. Krishnan-Ghosh, Y., Stephens, E. & Balasubramanian, S.A. PNA4 quadruplex. J. Am. Chem. Soc. 126, 5944–5945 (2004).

    Article  CAS  Google Scholar 

  15. Krishnan-Ghosh, Y., Stephens, E. & Balasubramanian, S. PNA forms an i-motif. Chem. Commun. (Camb.) 5278–5280 (2005).

  16. Cutrona, G. et al. The peptide nucleic acid targeted to a regulatory sequence of the translocated c-myc oncogene in Burkitt's lymphoma lacks immunogenicity: follow-up characterization of PNAEmu-NLS. Oligonucleotides 17, 146–150 (2007).

    Article  CAS  Google Scholar 

  17. Nielsen, P.E. Addressing the challenges of cellular delivery and bioavailability of peptide nucleic acids (PNA). Q. Rev. Biophys. 38, 345–350 (2005).

    Article  CAS  Google Scholar 

  18. Demidov, V.V. et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol. 48, 1310–1313 (1994).

    Article  CAS  Google Scholar 

  19. Giesen, U. et al. A formula for thermal stability (Tm) prediction of PNA/DNA duplexes. Nucleic Acids Res. 26, 5004–5006 (1998).

    Article  CAS  Google Scholar 

  20. Griffin, T.J. & Smith, L.M. An approach to predicting the stabilities of peptide nucleic acid: DNA duplexes. Anal. Biochem. 260, 56–63 (1998).

    Article  CAS  Google Scholar 

  21. Sen, A. & Nielsen, P.E. Unique properties of purine/pyrimidine asymmetric PNA.DNA duplexes: differential stabilization of PNA.DNA duplexes by purines in the PNA strand. Biophys. J. 90, 1329–1337 (2006).

    Article  CAS  Google Scholar 

  22. Ichida, J.K. et al. An in vitro selection system for TNA. J. Am. Chem. Soc. 127, 2802–2803 (2005).

    Article  CAS  Google Scholar 

  23. Cherny, D.Y. et al. DNA unwinding upon strand-displacement binding of a thymine-substituted polyamide to double-stranded DNA. Proc. Natl. Acad. Sci. USA 90, 1667–1670 (1993).

    Article  CAS  Google Scholar 

  24. Peffer, N.J. et al. Strand-invasion of duplex DNA by peptide nucleic acid oligomers. Proc. Natl. Acad. Sci. USA 90, 10648–10652 (1993).

    Article  CAS  Google Scholar 

  25. Smolina, I.V., Demidov, V.V., Soldatenkov, V.A., Chasovskikh, S.G. & Frank-Kamenetskii, M.D. End invasion of peptide nucleic acids (PNAs) with mixed-base composition into linear DNA duplexes. Nucleic Acids Res. 33, e146 (2005).

    Article  Google Scholar 

  26. SantaLucia, J. Jr. & Hicks, D. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004).

    Article  CAS  Google Scholar 

  27. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  Google Scholar 

  28. Doyon, J.B., Snyder, T.M. & Liu, D.R. Highly sensitive in vitro selections for DNA-linked synthetic small molecules with protein binding affinity and specificity. J. Am. Chem. Soc. 125, 12372–12373 (2003).

    Article  CAS  Google Scholar 

  29. Kanan, M.W., Rozenman, M.M., Sakurai, K., Snyder, T.M. & Liu, D.R. Reaction discovery enabled by DNA-templated synthesis and in vitro selection. Nature 431, 545–549 (2004).

    Article  CAS  Google Scholar 

  30. Wrenn, S.J., Weisinger, R.M., Halpin, D.R. & Harbury, P.B. Synthetic ligands discovered by in vitro selection. J. Am. Chem. Soc. 129, 13137–13143 (2007).

    Article  CAS  Google Scholar 

  31. Scheuermann, J. et al. DNA-encoded chemical libraries for the discovery of MMP-3 inhibitors. Bioconjug. Chem. 19, 778–785 (2008).

    Article  CAS  Google Scholar 

  32. Fitzwater, T. & Polisky, B.A. SELEX primer. Methods Enzymol. 267, 275–301 (1996).

    Article  CAS  Google Scholar 

  33. Gold, L., Polisky, B., Uhlenbeck, O. & Yarus, M. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64, 763–797 (1995).

    Article  CAS  Google Scholar 

  34. Chen, S.J. RNA folding: conformational statistics, folding kinetics, and ion electrostatics. Annu. Rev. Biophys. 37, 197–214 (2008).

    Article  CAS  Google Scholar 

  35. Kuhn, H. et al. Hybridization of DNA and PNA molecular beacons to single-stranded and double-stranded DNA targets. J. Am. Chem. Soc. 124, 1097–1103 (2002).

    Article  CAS  Google Scholar 

  36. Seitz, O. Solid-phase synthesis of doubly labeled peptide nucleic acids as probes for the real-time detection of hybridization. Angew. Chem. Int. Edn Engl. 39, 3249–3252 (2000).

    Article  CAS  Google Scholar 

  37. Davidson, A.R., Lumb, K.J. & Sauer, R.T. Cooperatively folded proteins in random sequence libraries. Nat. Struct. Biol. 2, 856–864 (1995).

    Article  CAS  Google Scholar 

  38. Sabeti, P.C., Unrau, P.J. & Bartel, D.P. Accessing rare activities from random RNA sequences: the importance of the length of molecules in the starting pool. Chem. Biol. 4, 767–774 (1997).

    Article  CAS  Google Scholar 

  39. Joyce, G.F. Directed evolution of nucleic acid enzymes. Annu. Rev. Biochem. 73, 791–836 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Office of Naval Research (N00014-03-1-0749), the National Institutes of Health (R01GM065865) and the Howard Hughes Medical Institute. Y.B. gratefully acknowledges the support of an NSF Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Y.B. and D.R.L. designed the research. Y.B., M.E.B., and R.E.K. performed the experiments. All authors contributed to data analysis and manuscript preparation.

Corresponding author

Correspondence to David R Liu.

Ethics declarations

Competing interests

Y.B. and D.R.L. are co-inventors on a Harvard University patent describing DNA-templated polymerization.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 3165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brudno, Y., Birnbaum, M., Kleiner, R. et al. An in vitro translation, selection and amplification system for peptide nucleic acids. Nat Chem Biol 6, 148–155 (2010). https://doi.org/10.1038/nchembio.280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing