Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aminoglycoside activity observed on single pre-translocation ribosome complexes

An Erratum to this article was published on 01 March 2010

This article has been updated

Abstract

Aminoglycoside-class antibiotics bind directly to ribosomal RNA, imparting pleiotropic effects on ribosome function. Despite in-depth structural investigations of aminoglycoside–RNA oligonucleotide and aminoglycoside-ribosome interactions, mechanisms explaining the unique ribosome inhibition profiles of chemically similar aminoglycosides remain elusive. Here, using single-molecule fluorescence resonance energy transfer (smFRET) methods, we show that high-affinity aminoglycoside binding to the conserved decoding site region of the functional pre-translocation ribosome complex specifically remodels the nature of intrinsic dynamic processes within the particle. The extents of these effects, which are distinct for each member of the aminoglycoside class, strongly correlate with their inhibition of EF-G–catalyzed translocation. Neomycin, a 4,5-linked aminoglycoside, binds with lower affinity to one or more secondary binding sites, mediating distinct structural and dynamic perturbations that further enhance translocation inhibition. These new insights help explain why closely related aminoglycosides elicit pleiotropic translation activities and demonstrate the potential utility of smFRET as a tool for dissecting the mechanisms of antibiotic action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aminoglycoside-induced restructuring of the ribosome 16S decoding site.
Figure 2: Kanamycin binding to the decoding site increases time-averaged occupancy of specific ribosome conformations.
Figure 3: Changes in population time-averaged state occupancy are caused by drug-induced changes in single ribosomes.
Figure 4: Alterations in tRNA dynamics are a common effect of aminoglycoside binding to the ribosome.
Figure 5: Neomycin alters tRNA dynamics on the ribosome in a bimodal fashion.
Figure 6: Stabilization of the classical state is strongly correlated with inhibition of translocation by decoding site–binding aminoglycosides.
Figure 7: Kinetic scheme of aminoglycoside-induced changes in tRNA dynamics.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 12 February 2010

    In the version of this article initially published, in the key for Figure 6a, the units for two of the inhibitor concentrations were incorrectly labeled as “M”, where they should have read “µM”. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Rodnina, M.V., Gromadski, K.B., Kothe, U. & Wieden, H.J. Recognition and selection of tRNA in translation. FEBS Lett. 579, 938–942 (2005).

    Article  CAS  Google Scholar 

  2. Shoji, S., Walker, S.E. & Fredrick, K. Ribosomal translocation: one step closer to the molecular mechanism. ACS Chem. Biol. 4, 93–107 (2009).

    Article  CAS  Google Scholar 

  3. Korostelev, A., Trakhanov, S., Laurberg, M. & Noller, H.F. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126, 1065–1077 (2006).

    Article  CAS  Google Scholar 

  4. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  Google Scholar 

  5. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 angstrom resolution. Science 292, 883–896 (2001).

    Article  CAS  Google Scholar 

  6. Munro, J.B., Sanbonmatsu, K.Y., Spahn, C.M. & Blanchard, S. Navigating the ribosome's metastable energy landscape. Trends Biochem. Sci. 34, 390–400 (2009).

    Article  CAS  Google Scholar 

  7. Semenkov, Y.P., Rodnina, M.V. & Wintermeyer, W. Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome. Nat. Struct. Biol. 7, 1027–1031 (2000).

    Article  CAS  Google Scholar 

  8. Sharma, D., Southworth, D.R. & Green, R. EF-G-independent reactivity of a pre-translocation-state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding. RNA 10, 102–113 (2004).

    Article  CAS  Google Scholar 

  9. Dorner, S., Brunelle, J.L., Sharma, D. & Green, R. The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nat. Struct. Mol. Biol. 13, 234–241 (2006).

    Article  CAS  Google Scholar 

  10. Frank, J., Gao, H., Sengupta, J., Gao, N. & Taylor, D.J. The process of mRNA-tRNA translocation. Proc. Natl. Acad. Sci. USA 104, 19671–19678 (2007).

    Article  CAS  Google Scholar 

  11. Marshall, R.A., Aitken, C.E., Dorywalska, M. & Puglisi, J.D. Translation at the single-molecule level. Annu. Rev. Biochem. 77, 177–203 (2008).

    Article  CAS  Google Scholar 

  12. Munro, J.B., Altman, R.B., O'Connor, N. & Blanchard, S.C. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell 25, 505–517 (2007).

    Article  CAS  Google Scholar 

  13. Green, R. & Noller, H.F. Ribosomes and translation. Annu. Rev. Biochem. 66, 679–716 (1997).

    Article  CAS  Google Scholar 

  14. Munro, J.B., Vaiana, A., Sanbonmatsu, K.Y. & Blanchard, S.C. A new view of protein synthesis: mapping the free energy landscape of the ribosome using single-molecule FRET. Biopolymers 89, 565–577 (2008).

    Article  CAS  Google Scholar 

  15. Davies, J. & Davis, B.D. Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics: the effect of drug concentration. J. Biol. Chem. 243, 3312–3316 (1968).

    CAS  PubMed  Google Scholar 

  16. Cabanas, M.J., Vazquez, D. & Modolell, J. Inhibition of ribosomal translocation by aminoglycoside antibiotics. Biochem. Biophys. Res. Commun. 83, 991–997 (1978).

    Article  CAS  Google Scholar 

  17. Misumi, M., Nishimura, T., Komai, T. & Tanaka, N. Interaction of kanamycin and related antibiotics with the large subunit of ribosomes and the inhibition of translocation. Biochem. Biophys. Res. Commun. 84, 358–365 (1978).

    Article  CAS  Google Scholar 

  18. Fredrick, K. & Noller, H. Catalysis of ribosomal translocation by sparsomycin. Science 300, 1159–1162 (2003).

    Article  CAS  Google Scholar 

  19. Studer, S.M., Feinberg, J.S. & Joseph, S. Rapid kinetic analysis of EF-G-dependent mRNA translocation in the ribosome. J. Mol. Biol. 327, 369–381 (2003).

    Article  CAS  Google Scholar 

  20. Peske, F., Savelsbergh, A., Katunin, V.I., Rodnina, M.V. & Wintermeyer, W. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J. Mol. Biol. 343, 1183–1194 (2004).

    Article  CAS  Google Scholar 

  21. Hirokawa, G. et al. Post-termination complex disassembly by ribosome recycling factor, a functional tRNA mimic. EMBO J. 21, 2272–2281 (2002).

    Article  CAS  Google Scholar 

  22. Puglisi, J.D. et al. Aminoglycoside antibiotics and decoding. in The Ribosome: Structure, Function, Antibiotics, and Cellular Interactions (eds. Garrett, R.A. et al.) 419–429 (American Society for Microbiology Press, Washington, DC, 2000).

  23. Ogle, J.M., Carter, A.P. & Ramakrishnan, V. Insights into the decoding mechanism from recent ribosome structures. Trends Biochem. Sci. 28, 259–266 (2003).

    Article  CAS  Google Scholar 

  24. Jerinic, O. & Joseph, S. Conformational changes in the ribosome induced by translational miscoding agents. J. Mol. Biol. 304, 707–713 (2000).

    Article  CAS  Google Scholar 

  25. Fast, R., Eberhard, T.H., Ruusala, T. & Kurland, C.G. Does streptomycin cause an error catastrophe? Biochimie 69, 131–136 (1987).

    Article  CAS  Google Scholar 

  26. Kurland, C.G. Translational accuracy and the fitness of bacteria. Annu. Rev. Genet. 26, 29–50 (1992).

    Article  CAS  Google Scholar 

  27. Sander, P., Prammananan, T. & Böttger, E.C. Introducing mutations into a chromosomal rRNA gene using a genetically modified eubacterial host with a single rRNA operon. Mol. Microbiol. 22, 841–848 (1996).

    Article  CAS  Google Scholar 

  28. Prammananan, T. et al. A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J. Infect. Dis. 177, 1573–1581 (1998).

    Article  CAS  Google Scholar 

  29. Recht, M.I., Douthwaite, S. & Puglisi, J.D. Basis for prokaryotic specificity of action of aminoglycoside antibiotics. EMBO J. 18, 3133–3138 (1999).

    Article  CAS  Google Scholar 

  30. Böttger, E.C., Springer, B., Prammananan, T., Kidan, Y. & Sander, P. Structural basis for selectivity and toxicity of ribosomal antibiotics. EMBO Rep. 2, 318–323 (2001).

    Article  Google Scholar 

  31. Blanchard, S.C., Kim, H.D., Gonzalez, R.L., Jr., Puglisi, J.D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 101, 12893–12898 (2004).

    Article  CAS  Google Scholar 

  32. Ryu, D.H., Litovchick, A. & Rando, R.R. Stereospecificity of aminoglycoside-ribosomal interactions. Biochemistry 41, 10499–10509 (2002).

    Article  CAS  Google Scholar 

  33. Sucheck, S.J. et al. Design of bifunctional antibiotics that target bacterial rRNA and inhibit resistance-causing enzymes. J. Am. Chem. Soc. 122, 5230–5231 (2000).

    Article  CAS  Google Scholar 

  34. Ermolenko, D.N. et al. The antibiotic viomycin traps the ribosome in an intermediate state of translocation. Nat. Struct. Mol. Biol. 14, 493–497 (2007).

    Article  CAS  Google Scholar 

  35. Borovinskaya, M.A. et al. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat. Struct. Mol. Biol. 14, 727–732 (2007).

    Article  CAS  Google Scholar 

  36. Semenkov, Y., Shapkina, T., Makhno, V. & Kirillov, S. Puromycin reaction for the A site-bound peptidyl-tRNA. FEBS Lett. 296, 207–210 (1992).

    Article  CAS  Google Scholar 

  37. Johansen, S.K., Maus, C.E., Plikaytis, B.B. & Douthwaite, S. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol. Cell 23, 173–182 (2006).

    Article  CAS  Google Scholar 

  38. Cornish, P.V., Ermolenko, D.N., Noller, H.F. & Ha, T. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30, 578–588 (2008).

    Article  CAS  Google Scholar 

  39. Pan, D., Kirillov, S. & Cooperman, B.S. Kinetically competent intermediates in the translocation step of protein synthesis. Mol. Cell 25, 519–529 (2007).

    Article  CAS  Google Scholar 

  40. Kim, H.D., Puglisi, J.D. & Chu, S. Fluctuations of transfer RNAs between classical and hybrid states. Biophys. J. 93, 3575–3582 (2007).

    Article  CAS  Google Scholar 

  41. Yamada, T., Teshima, T., Shiba, T. & Nierhaus, K.H. The translocation inhibitor tuberactinomycin binds to nucleic acids and blocks the in vitro assembly of 50S subunits. Nucleic Acids Res. 8, 5767–5777 (1980).

    Article  CAS  Google Scholar 

  42. Buchan, J.R. & Stansfield, I. Halting a cellular production line: responses to ribosomal pausing during translation. Biol. Cell 99, 475–487 (2007).

    Article  CAS  Google Scholar 

  43. Kaul, M. & Pilch, D.S. Thermodynamics of aminoglycoside-rRNA recognition: the binding of neomycin-class aminoglycosides of the A site of 16S rRNA. Biochemistry 41, 7695–7706 (2002).

    Article  CAS  Google Scholar 

  44. Vaiana, A.C. & Sanbonmatsu, K.Y. Stochastic gating and drug-ribosome interactions. J. Mol. Biol. 386, 648–661 (2008).

    Article  Google Scholar 

  45. Karimi, R. & Ehrenberg, M. Dissociation rates of peptidyl-tRNA from the P-site of E. coli ribosomes. EMBO J. 15, 1149–1154 (1996).

    Article  CAS  Google Scholar 

  46. Nierhaus, K.H. The allosteric three-site model for the ribosomal elongation cycle: features and future. Biochemistry 29, 4997–5008 (1990).

    Article  CAS  Google Scholar 

  47. Zaher, H.S. & Green, R. Quality control by the ribosome following peptide bond formation. Nature 457, 161–166 (2009).

    Article  CAS  Google Scholar 

  48. Campuzano, S., Vazquez, D. & Modolell, J. Dissociation of guanosine nucleotide-elongation factor G-ribosome complexes. Biochemistry 18, 1570–1574 (1979).

    Article  CAS  Google Scholar 

  49. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    Article  CAS  Google Scholar 

  50. Zavialov, A.V. & Ehrenberg, M. Peptidyl-tRNA regulates the GTPase activity of translation factors. Cell 114, 113–122 (2003).

    Article  CAS  Google Scholar 

  51. Youngman, E.M. & Green, R. Affinity purification of in vivo-assembled ribosomes for in vitro biochemical analysis. Methods 36, 305–312 (2005).

    Article  CAS  Google Scholar 

  52. Qin, F. Principles of single-channel kinetic analysis. Methods Mol. Biol. 403, 253–286 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Munro for comments and suggestions during the preparation of this manuscript and for the generation of ribosome structural diagrams. We thank all members of the laboratory for their constructive comments during preparation of this manuscript, as well as R. Green (Johns Hopkins School of Medicine, Howard Hughes Medical Institute) for providing MS2-tagged rRNA constructs. This work was supported by the US National Institute of General Medical Sciences (5R01GM079238-03), New York State Foundation for Science, Technology and Innovation, and a US National Science Foundation CAREER award. M.B.F. is a trainee in the Weill Cornell/Rockefeller University/Sloan-Kettering Tri-Institutional MD-PhD Program supported by US National Institutes of Health Medical Scientist Training Program grant GM07739. D.S.T. is supported by the Tri-Institutional Training Program in Computational Biology and Medicine.

Author information

Authors and Affiliations

Authors

Contributions

M.B.F. and S.C.B. designed the research. M.B.F. performed the smFRET experiments. D.S.T. implemented the automated analysis software, and D.S.T. and M.B.F. performed the data analysis. R.B.A. prepared the dye-labeled tRNA and ribosome complexes and reagents for the smFRET experiments. M.B.F., D.S.T. and S.C.B. prepared the manuscript.

Corresponding author

Correspondence to Scott C Blanchard.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Tables 1–3 and Supplementary Methods (PDF 5388 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldman, M., Terry, D., Altman, R. et al. Aminoglycoside activity observed on single pre-translocation ribosome complexes. Nat Chem Biol 6, 54–62 (2010). https://doi.org/10.1038/nchembio.274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing